{"id":"https://openalex.org/W2944150796","doi":"https://doi.org/10.1137/1.9781611975673.5","title":"Deep Multi-view Information Bottleneck","display_name":"Deep Multi-view Information Bottleneck","publication_year":2019,"publication_date":"2019-05-06","ids":{"openalex":"https://openalex.org/W2944150796","doi":"https://doi.org/10.1137/1.9781611975673.5","mag":"2944150796"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.5","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.5","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.5","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100341321","display_name":"Qi Wang","orcid":"https://orcid.org/0000-0002-7028-4956"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qi Wang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087738005","display_name":"Claire Boudreau","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Claire Boudreau","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031296254","display_name":"Qixing Luo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qixing Luo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071546444","display_name":"Pang\u2010Ning Tan","orcid":"https://orcid.org/0000-0003-3205-0339"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang-Ning Tan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047215778","display_name":"Jiayu Zhou","orcid":"https://orcid.org/0000-0003-4336-6777"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiayu Zhou","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.798,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":42,"citation_normalized_percentile":{"value":0.999859,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"37","last_page":"45"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/information-bottleneck-method","display_name":"Information bottleneck method","score":0.83583474},{"id":"https://openalex.org/keywords/representation","display_name":"Representation (politics)","score":0.6310005},{"id":"https://openalex.org/keywords/complement","display_name":"Complement (music)","score":0.6177446},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.587482},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.567882},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.56497},{"id":"https://openalex.org/keywords/multiple-object-tracking","display_name":"Multiple Object Tracking","score":0.56486},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.559919}],"concepts":[{"id":"https://openalex.org/C60008888","wikidata":"https://www.wikidata.org/wiki/Q6031013","display_name":"Information bottleneck method","level":3,"score":0.83583474},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70860004},{"id":"https://openalex.org/C152139883","wikidata":"https://www.wikidata.org/wiki/Q252973","display_name":"Mutual information","level":2,"score":0.6879261},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65284705},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6310005},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.61921674},{"id":"https://openalex.org/C112313634","wikidata":"https://www.wikidata.org/wiki/Q7886648","display_name":"Complement (music)","level":5,"score":0.6177446},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.56529874},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.54409534},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188082640","wikidata":"https://www.wikidata.org/wiki/Q1780899","display_name":"Complementation","level":4,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C127716648","wikidata":"https://www.wikidata.org/wiki/Q104053","display_name":"Phenotype","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.5","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.5","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.5","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.5","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1531883353","https://openalex.org/W1536675765","https://openalex.org/W1972442292","https://openalex.org/W1976258951","https://openalex.org/W2016538560","https://openalex.org/W2025341678","https://openalex.org/W2060314721","https://openalex.org/W2085789144","https://openalex.org/W2105610271","https://openalex.org/W2127086485","https://openalex.org/W2133455944","https://openalex.org/W2164587673","https://openalex.org/W2744032142","https://openalex.org/W2766113466"],"related_works":["https://openalex.org/W4301016710","https://openalex.org/W4295728955","https://openalex.org/W4287238667","https://openalex.org/W3149287595","https://openalex.org/W3089381707","https://openalex.org/W3034190530","https://openalex.org/W2783047733","https://openalex.org/W2741297526","https://openalex.org/W2622284819","https://openalex.org/W1504394672"],"abstract_inverted_index":{"In":[0,16,39],"many":[1],"classification":[2],"problems,":[3],"the":[4,19,51,76,80,83,89,93,101,106,123,134,144,151,166,169],"predictions":[5],"can":[6,139],"be":[7,140],"enhanced":[8],"by":[9],"fusing":[10],"information":[11,20,52,61,78,91,138],"from":[12,21,62],"different":[13,22,109],"data":[14,103],"views.":[15],"particular,":[17],"when":[18],"views":[23,64,110],"complement":[24],"each":[25,98],"other,":[26],"it":[27],"is":[28],"expected":[29],"that":[30],"multi-view":[31,46],"learning":[32,47],"will":[33],"lead":[34],"to":[35,55,121,127,148,164],"improved":[36],"predictive":[37],"performance.":[38],"this":[40],"paper,":[41],"we":[42,116,142],"proposed":[43,73],"a":[44],"supervised":[45],"framework":[48],"based":[49],"on":[50,158],"bottleneck":[53],"principle":[54],"filter":[56],"out":[57],"irrelevant":[58],"and":[59,65,82,100,114,126,161],"noisy":[60],"multiple":[63],"learn":[66,122],"an":[67],"accurate":[68],"joint":[69,85],"representation.":[70,104],"Specifically,":[71],"our":[72],"method":[74,147],"maximizes":[75],"mutual":[77,90,137],"between":[79,92,108],"labels":[81],"learned":[84,94],"representation":[86,96,125],"while":[87],"minimizing":[88],"latent":[95,124],"of":[97,136,168],"view":[99],"original":[102],"As":[105],"relationships":[107],"are":[111],"often":[112],"complicated":[113],"nonlinear,":[115],"employed":[117,143],"deep":[118],"neural":[119],"networks":[120],"disentangle":[128],"their":[129],"complex":[130],"dependencies.":[131],"However,":[132],"since":[133],"computation":[135],"intractable,":[141],"variational":[145],"inference":[146],"efficiently":[149],"solve":[150],"optimization":[152],"problem.":[153],"We":[154],"performed":[155],"extensive":[156],"experiments":[157],"various":[159],"synthetic":[160],"real-world":[162],"datasets":[163],"demonstrate":[165],"effectiveness":[167],"framework.":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2944150796","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-10-30T12:58:33.797327","created_date":"2019-05-16"}