{"id":"https://openalex.org/W2944070919","doi":"https://doi.org/10.1137/1.9781611975673.3","title":"Augmented Multi-Task Learning by Optimal Transport","display_name":"Augmented Multi-Task Learning by Optimal Transport","publication_year":2019,"publication_date":"2019-05-06","ids":{"openalex":"https://openalex.org/W2944070919","doi":"https://doi.org/10.1137/1.9781611975673.3","mag":"2944070919"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.3","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.3","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.3","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100387883","display_name":"Boyang Liu","orcid":"https://orcid.org/0000-0003-0341-309X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Boyang Liu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071546444","display_name":"Pang\u2010Ning Tan","orcid":"https://orcid.org/0000-0003-3205-0339"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang-Ning Tan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047215778","display_name":"Jiayu Zhou","orcid":"https://orcid.org/0000-0003-4336-6777"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiayu Zhou","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.847,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.637127,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"19","last_page":"27"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.590255},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.571562},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.570847},{"id":"https://openalex.org/keywords/incremental-learning","display_name":"Incremental Learning","score":0.568494},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.560725},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.49098256},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.42779073}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.752667},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7230162},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.70458966},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6650803},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66274977},{"id":"https://openalex.org/C28006648","wikidata":"https://www.wikidata.org/wiki/Q6934509","display_name":"Multi-task learning","level":3,"score":0.6462459},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5613158},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.49098256},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.44335163},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.42779073},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12535042},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11783585},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.3","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.3","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1137/1.9781611975673.3","pdf_url":"https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.3","source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":3,"referenced_works":["https://openalex.org/W2018096278","https://openalex.org/W2036996178","https://openalex.org/W2165644552"],"related_works":["https://openalex.org/W4287630354","https://openalex.org/W4287241967","https://openalex.org/W3164872277","https://openalex.org/W3144173820","https://openalex.org/W3097966281","https://openalex.org/W2971003014","https://openalex.org/W2948473094","https://openalex.org/W2371138613","https://openalex.org/W2080152487","https://openalex.org/W1630076647"],"abstract_inverted_index":{"Multi-task":[0],"learning":[1,17],"(MTL)":[2],"provides":[3],"an":[4],"effective":[5,71],"approach":[6],"to":[7,51,113,138],"improve":[8],"generalization":[9],"error":[10],"for":[11,45,68,101],"multiple":[12],"related":[13,90],"prediction":[14],"tasks":[15,19,47,97],"by":[16,28,77,127,144],"the":[18,35,42,53,70,85,114,141,155,162,166],"jointly,":[20],"assuming":[21],"there":[22],"is":[23,39,98],"a":[24,65,99,132],"common":[25],"structure":[26],"shared":[27,36],"their":[29,105],"model":[30],"parameters.":[31],"Despite":[32],"its":[33],"successes,":[34],"parameter":[37],"assumption":[38],"ineffective":[40],"when":[41],"sample":[43,72],"sizes":[44],"some":[46],"are":[48,159],"too":[49],"small":[50],"infer":[52],"task":[54,76],"relationships":[55],"correctly":[56],"from":[57,84,95,149],"data.":[58],"To":[59],"overcome":[60],"this":[61,125],"limitation,":[62],"we":[63],"propose":[64],"novel":[66],"framework":[67,123,180],"increasing":[69],"size":[73],"of":[74,88,134,165],"each":[75],"augmenting":[78],"it":[79],"with":[80,131,161],"pseudo-labeled":[81,142],"instances":[82,143,148,164],"generated":[83],"training":[86,93,147,163],"data":[87,94,106,176],"other":[89,96,150,183],"tasks.":[91],"Incorporating":[92],"challenge":[100,126],"regression":[102,130],"problems":[103],"as":[104],"distributions":[107],"may":[108],"not":[109],"be":[110],"consistent":[111,160],"due":[112],"co-variate":[115],"shift":[116],"and":[117,153,174],"response":[118],"drift":[119],"problems.":[120],"Our":[121],"proposed":[122],"addresses":[124],"coupling":[128],"multitask":[129],"series":[133],"optimal":[135],"transport":[136],"steps":[137],"iteratively":[139],"learn":[140],"identifying":[145],"relevant":[146],"source":[151],"domains":[152],"refining":[154],"pseudo-labels":[156],"until":[157],"they":[158],"target":[167],"domain.":[168],"Experimental":[169],"results":[170],"on":[171],"both":[172],"synthetic":[173],"real-world":[175],"showed":[177],"that":[178],"our":[179],"consistently":[181],"outperformed":[182],"state-of-the-art":[184],"MTL":[185],"methods.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2944070919","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2019,"cited_by_count":2}],"updated_date":"2024-10-02T18:08:05.162005","created_date":"2019-05-16"}