{"id":"https://openalex.org/W2035885121","doi":"https://doi.org/10.1137/0911029","title":"Computing Truncated Singular Value Decomposition Least Squares Solutions by Rank Revealing QR-Factorizations","display_name":"Computing Truncated Singular Value Decomposition Least Squares Solutions by Rank Revealing QR-Factorizations","publication_year":1990,"publication_date":"1990-05-01","ids":{"openalex":"https://openalex.org/W2035885121","doi":"https://doi.org/10.1137/0911029","mag":"2035885121"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/0911029","pdf_url":null,"source":{"id":"https://openalex.org/S4210181992","display_name":"SIAM Journal on Scientific and Statistical Computing","issn_l":"0196-5204","issn":["0196-5204","2168-3417"],"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003735769","display_name":"Tony F. Chan","orcid":"https://orcid.org/0000-0001-6196-2068"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tony F. Chan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5039737516","display_name":"Per Christian Hansen","orcid":"https://orcid.org/0000-0002-7333-7216"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Per Christian Hansen","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.509,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":92,"citation_normalized_percentile":{"value":0.979075,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"11","issue":"3","first_page":"519","last_page":"530"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10792","display_name":"Matrix Algorithms and Iterative Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10792","display_name":"Matrix Algorithms and Iterative Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13487","display_name":"Total Least Squares Methods and Applications","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/2604","display_name":"Applied Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9765,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/qr-decomposition","display_name":"QR decomposition","score":0.85717016},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.7294385},{"id":"https://openalex.org/keywords/singular-value","display_name":"Singular value","score":0.61865467},{"id":"https://openalex.org/keywords/structured-low-rank-approximation","display_name":"Structured Low-Rank Approximation","score":0.564338},{"id":"https://openalex.org/keywords/weighted-least-squares","display_name":"Weighted Least Squares","score":0.547268},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.52561325},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.51941},{"id":"https://openalex.org/keywords/eigenvalue-problems","display_name":"Eigenvalue Problems","score":0.518512},{"id":"https://openalex.org/keywords/matrix-computations","display_name":"Matrix Computations","score":0.509722},{"id":"https://openalex.org/keywords/least-squares-function-approximation","display_name":"Least-squares function approximation","score":0.5007653}],"concepts":[{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.932026},{"id":"https://openalex.org/C188060507","wikidata":"https://www.wikidata.org/wiki/Q653242","display_name":"QR decomposition","level":3,"score":0.85717016},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.7294385},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6911304},{"id":"https://openalex.org/C109282560","wikidata":"https://www.wikidata.org/wiki/Q4166054","display_name":"Singular value","level":3,"score":0.61865467},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.61094844},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.5801093},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.52561325},{"id":"https://openalex.org/C9936470","wikidata":"https://www.wikidata.org/wiki/Q6510405","display_name":"Least-squares function approximation","level":3,"score":0.5007653},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.4554415},{"id":"https://openalex.org/C58663186","wikidata":"https://www.wikidata.org/wiki/Q6553462","display_name":"Linear least squares","level":3,"score":0.4548226},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33884245},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.2995448},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15222695},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.12847802},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/0911029","pdf_url":null,"source":{"id":"https://openalex.org/S4210181992","display_name":"SIAM Journal on Scientific and Statistical Computing","issn_l":"0196-5204","issn":["0196-5204","2168-3417"],"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W133977063","https://openalex.org/W1555413345","https://openalex.org/W1906681256","https://openalex.org/W1972004260","https://openalex.org/W2007966677","https://openalex.org/W2008205484","https://openalex.org/W2039393654","https://openalex.org/W2043662633","https://openalex.org/W2059685595","https://openalex.org/W2066043610","https://openalex.org/W2088028877","https://openalex.org/W291003596","https://openalex.org/W2989457786","https://openalex.org/W54540909","https://openalex.org/W55303285"],"related_works":["https://openalex.org/W4382583540","https://openalex.org/W4319586039","https://openalex.org/W3046517157","https://openalex.org/W2150953077","https://openalex.org/W2148568324","https://openalex.org/W2114458102","https://openalex.org/W2035885121","https://openalex.org/W2002598339","https://openalex.org/W1990844505","https://openalex.org/W1607100495"],"abstract_inverted_index":{"Solutions":[0],"to":[1,33,41,99,120],"rank":[2,27,73,83],"deficient":[3],"least":[4],"squares":[5],"problems":[6],"are":[7,105],"conveniently":[8],"expressed":[9],"in":[10,114],"terms":[11],"of":[12,18,74,81],"the":[13,19,23,42,57,64,75,93,100,117,122],"singular":[14,37,95,102],"value":[15],"decomposition":[16],"(SVD)":[17],"coefficient":[20],"matrix.":[21],"When":[22],"matrix":[24,76],"is":[25,32,53,77],"nearly":[26],"deficient,":[28],"a":[29,61,68,82],"common":[30],"procedure":[31],"neglect":[34],"its":[35],"smallest":[36],"values,":[38],"which":[39,86,104],"leads":[40],"truncated":[43],"SVD":[44],"(TSVD)":[45],"solution.":[46,124],"In":[47],"this":[48],"paper,":[49],"an":[50],"efficient":[51],"method":[52],"presented":[54],"for":[55,66],"computing":[56,67],"TSVD":[58,123],"solution":[59],"via":[60],"QR-factorization,":[62,85],"without":[63],"need":[65],"complete":[69],"SVD.":[70],"The":[71],"numerical":[72],"determined":[78],"by":[79,108],"means":[80],"revealing":[84],"provides":[87],"upper":[88],"and":[89,97,112],"lower":[90],"bounds":[91],"on":[92],"small":[94],"values":[96],"approximations":[98],"corresponding":[101],"vectors,":[103],"then":[106],"refined":[107],"inverse":[109],"subspace":[110],"iteration":[111],"used":[113],"conjunction":[115],"with":[116],"QR":[118],"factors":[119],"compute":[121]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2035885121","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":7},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":2}],"updated_date":"2024-09-29T22:01:09.378730","created_date":"2016-06-24"}