iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1117/12.2512513
{"id":"https://openalex.org/W2921192115","doi":"https://doi.org/10.1117/12.2512513","title":"Towards deep radiomics: nodule malignancy prediction using CNNs on feature images","display_name":"Towards deep radiomics: nodule malignancy prediction using CNNs on feature images","publication_year":2019,"publication_date":"2019-03-13","ids":{"openalex":"https://openalex.org/W2921192115","doi":"https://doi.org/10.1117/12.2512513","mag":"2921192115"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2512513","pdf_url":null,"source":{"id":"https://openalex.org/S4306519508","display_name":"Medical Imaging 2018: Computer-Aided Diagnosis","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006513001","display_name":"Rahul Paul","orcid":"https://orcid.org/0000-0003-1491-1166"},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rahul Paul","raw_affiliation_strings":["Univ. of South Florida (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of South Florida (United States)","institution_ids":["https://openalex.org/I2613432"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048607623","display_name":"Dmitry Cherezov","orcid":"https://orcid.org/0000-0001-5246-1544"},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dmitry Cherezov","raw_affiliation_strings":["Univ. of South Florida (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of South Florida (United States)","institution_ids":["https://openalex.org/I2613432"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066835564","display_name":"Matthew B. Schabath","orcid":"https://orcid.org/0000-0003-3241-3216"},"institutions":[{"id":"https://openalex.org/I3019308854","display_name":"Moffitt Cancer Center","ror":"https://ror.org/01xf75524","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I3019308854"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Matthew Schabath","raw_affiliation_strings":["H. Lee Moffitt Cancer Ctr. & Research Institute (United States)"],"affiliations":[{"raw_affiliation_string":"H. Lee Moffitt Cancer Ctr. & Research Institute (United States)","institution_ids":["https://openalex.org/I3019308854"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082346230","display_name":"Robert J. Gillies","orcid":"https://orcid.org/0000-0002-8888-7747"},"institutions":[{"id":"https://openalex.org/I3019308854","display_name":"Moffitt Cancer Center","ror":"https://ror.org/01xf75524","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I3019308854"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Robert Gillies","raw_affiliation_strings":["H. Lee Moffitt Cancer Ctr. & Research Institute (United States)"],"affiliations":[{"raw_affiliation_string":"H. Lee Moffitt Cancer Ctr. & Research Institute (United States)","institution_ids":["https://openalex.org/I3019308854"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113509051","display_name":"Lawrence Hall","orcid":null},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lawrence Hall","raw_affiliation_strings":["Univ. of South Florida (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of South Florida (United States)","institution_ids":["https://openalex.org/I2613432"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053211631","display_name":"Dmitry B. Goldgof","orcid":"https://orcid.org/0000-0001-5461-863X"},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dmitry Goldgof","raw_affiliation_strings":["Univ. of South Florida (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of South Florida (United States)","institution_ids":["https://openalex.org/I2613432"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.347,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.706687,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":"67","issue":null,"first_page":"143","last_page":"143"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics in Medical Imaging Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics in Medical Imaging Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Diagnosis and Treatment of Lung Cancer","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"Deep Learning in Medical Image Analysis","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6089545},{"id":"https://openalex.org/keywords/cancer-imaging","display_name":"Cancer Imaging","score":0.596891},{"id":"https://openalex.org/keywords/tumor-staging","display_name":"Tumor Staging","score":0.561736},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.54019},{"id":"https://openalex.org/keywords/lung-cancer","display_name":"Lung Cancer","score":0.526721},{"id":"https://openalex.org/keywords/medical-imaging","display_name":"Medical Imaging","score":0.52166}],"concepts":[{"id":"https://openalex.org/C2778559731","wikidata":"https://www.wikidata.org/wiki/Q23808793","display_name":"Radiomics","level":2,"score":0.914756},{"id":"https://openalex.org/C2779399171","wikidata":"https://www.wikidata.org/wiki/Q1483951","display_name":"Malignancy","level":2,"score":0.63875055},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6141156},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6089545},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5816011},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4645322},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.17367575},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.14873555},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2512513","pdf_url":null,"source":{"id":"https://openalex.org/S4306519508","display_name":"Medical Imaging 2018: Computer-Aided Diagnosis","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.82}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1213336605","https://openalex.org/W1490308602","https://openalex.org/W1821462560","https://openalex.org/W2095705004","https://openalex.org/W2097475056","https://openalex.org/W2470491115","https://openalex.org/W2482351703","https://openalex.org/W2504629029","https://openalex.org/W2552440462","https://openalex.org/W2570618306","https://openalex.org/W2607306668","https://openalex.org/W2743008510","https://openalex.org/W2790973804","https://openalex.org/W2953384591","https://openalex.org/W2963553763","https://openalex.org/W3141140255","https://openalex.org/W4234552385"],"related_works":["https://openalex.org/W4388577230","https://openalex.org/W4385221818","https://openalex.org/W4205100762","https://openalex.org/W3030796519","https://openalex.org/W3009210156","https://openalex.org/W3000891326","https://openalex.org/W2734724112","https://openalex.org/W2582997534","https://openalex.org/W2042327336","https://openalex.org/W2033914206"],"abstract_inverted_index":{"Lung":[0],"cancer":[1,181,194],"is":[2,19,152,216],"a":[3,54,98,153,186],"leading":[4],"cause":[5],"of":[6,23,27,46,93,103,134,146,162,165,177,188],"cancer-related":[7],"death":[8],"worldwide":[9],"and":[10,25,44,60,70,95,128,160,167,191,212],"in":[11,199,219],"the":[12,20,104,158,174,178],"USA.":[13],"Low":[14],"Dose":[15],"Computed":[16],"tomography":[17],"(LDCT)":[18],"primary":[21],"method":[22,56],"detection":[24,43,71],"diagnosis":[26,45],"lung":[28,47,180,193],"cancers.":[29,48],"Radiomics":[30],"provides":[31,137],"further":[32],"analysis":[33],"using":[34,222],"LDCT":[35,73,175],"scans":[36],"which":[37,215],"provide":[38],"an":[39,64,132,141,217],"opportunity":[40],"for":[41,57,67,119,234],"early":[42],"The":[49,144,202],"convolutional":[50],"neural":[51],"network":[52],"(CNN),":[53],"powerful":[55],"image":[58,142,224],"classification":[59],"recognition,":[61],"has":[62],"opened":[63],"alternative":[65],"path":[66],"tumor":[68],"identification":[69],"from":[72,89,206],"scans.":[74],"Nodules":[75],"have":[76],"different":[77,90],"shapes,":[78],"boundaries":[79],"or":[80,226],"patterns.":[81],"In":[82],"this":[83,109,207],"study,":[84],"we":[85],"created":[86],"feature":[87,105,147],"images":[88,116,125,148,229],"texture":[91,115,124],"features":[92,166,225],"nodules":[94],"then":[96],"used":[97,118,129,198],"CNN":[99,150],"to":[100,130,156,170,232],"classify":[101],"each":[102],"images.":[106],"We":[107],"call":[108],"approach":[110,155],"\"Deep":[111],"Radiomics\".":[112],"Law's":[113,123],"3-D":[114],"were":[117,126,197],"our":[120,200],"analysis.":[121],"Ten":[122],"generated":[127],"train":[131],"ensemble":[133,171],"CNNs.":[135],"Texture":[136],"information":[138],"about":[139],"how":[140],"looks.":[143],"use":[145],"as":[149,230],"input":[151,231],"novel":[154],"enable":[157],"generation":[159],"extraction":[161],"new":[163],"types":[164],"lends":[168],"itself":[169],"generation.":[172],"From":[173],"arm":[176],"national":[179],"screening":[182],"study":[183,208],"(NLST)":[184],"dataset,":[185],"subset":[187],"nodule":[189],"positive":[190],"screen-detected":[192],"(SDLC)":[195],"cases":[196],"study.":[201],"best":[203],"result":[204],"obtained":[205],"was":[209],"79.32%":[210],"accuracy":[211,220],"0.88":[213],"AUC,":[214],"improvement":[218],"over":[221],"just":[223,227],"original":[228],"CNNs":[233],"classification.":[235]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2921192115","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2024-11-28T06:39:26.028527","created_date":"2019-03-22"}