iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1117/12.2293240
{"id":"https://openalex.org/W2793894139","doi":"https://doi.org/10.1117/12.2293240","title":"Blind CT image quality assessment via deep learning strategy: initial study","display_name":"Blind CT image quality assessment via deep learning strategy: initial study","publication_year":2018,"publication_date":"2018-03-07","ids":{"openalex":"https://openalex.org/W2793894139","doi":"https://doi.org/10.1117/12.2293240","mag":"2793894139"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2293240","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006049117","display_name":"Jianhua Ma","orcid":"https://orcid.org/0000-0003-2958-1710"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianhua Ma","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058376655","display_name":"Li Sui","orcid":"https://orcid.org/0000-0002-8350-5287"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sui Li","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100608622","display_name":"Ji He","orcid":"https://orcid.org/0000-0003-3640-3488"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ji He","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100616765","display_name":"Yongbo Wang","orcid":"https://orcid.org/0009-0007-8082-8391"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongbo Wang","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]},{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102978062","display_name":"Yuting Liao","orcid":"https://orcid.org/0000-0002-7186-1962"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuting Liao","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068647018","display_name":"Dong Zeng","orcid":null},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dong Zeng","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024645254","display_name":"Zhaoying Bian","orcid":"https://orcid.org/0000-0002-6433-5067"},"institutions":[{"id":"https://openalex.org/I58200834","display_name":"Southern Medical University","ror":"https://ror.org/01vjw4z39","country_code":"CN","type":"education","lineage":["https://openalex.org/I58200834"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaoying Bian","raw_affiliation_strings":["Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","Southern Medical Univ. (China)"],"affiliations":[{"raw_affiliation_string":"Southern Medical Univ. (China)","institution_ids":["https://openalex.org/I58200834"]},{"raw_affiliation_string":"Guangzhou Key Lab. of Medical Radiation Imaging and Detection Technology (China)","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.255,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.723233,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11165","display_name":"Image Quality Assessment in Multimedia Content","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11165","display_name":"Image Quality Assessment in Multimedia Content","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11361","display_name":"Breast Cancer Screening Technology","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":0.993,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-quality-assessment","display_name":"Image Quality Assessment","score":0.606918},{"id":"https://openalex.org/keywords/stereoscopic-images","display_name":"Stereoscopic Images","score":0.50404},{"id":"https://openalex.org/keywords/mean-opinion-score","display_name":"Mean opinion score","score":0.4854091},{"id":"https://openalex.org/keywords/image-noise","display_name":"Image noise","score":0.467846},{"id":"https://openalex.org/keywords/quality-score","display_name":"Quality Score","score":0.46246833},{"id":"https://openalex.org/keywords/standard-test-image","display_name":"Standard test image","score":0.422641}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7985319},{"id":"https://openalex.org/C55020928","wikidata":"https://www.wikidata.org/wiki/Q3813865","display_name":"Image quality","level":3,"score":0.70135206},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6621674},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.56869936},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.55029184},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5074784},{"id":"https://openalex.org/C159744936","wikidata":"https://www.wikidata.org/wiki/Q1126730","display_name":"Spearman's rank correlation coefficient","level":2,"score":0.49350584},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.49235785},{"id":"https://openalex.org/C2780092901","wikidata":"https://www.wikidata.org/wiki/Q3433612","display_name":"Correlation coefficient","level":2,"score":0.49027207},{"id":"https://openalex.org/C62897895","wikidata":"https://www.wikidata.org/wiki/Q1915482","display_name":"Mean opinion score","level":3,"score":0.4854091},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.47174773},{"id":"https://openalex.org/C35772409","wikidata":"https://www.wikidata.org/wiki/Q1323086","display_name":"Image noise","level":3,"score":0.467846},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.46414602},{"id":"https://openalex.org/C2779346075","wikidata":"https://www.wikidata.org/wiki/Q7268763","display_name":"Quality Score","level":3,"score":0.46246833},{"id":"https://openalex.org/C180462255","wikidata":"https://www.wikidata.org/wiki/Q3559736","display_name":"Standard test image","level":4,"score":0.422641},{"id":"https://openalex.org/C55078378","wikidata":"https://www.wikidata.org/wiki/Q1136628","display_name":"Pearson product-moment correlation coefficient","level":2,"score":0.41104278},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.36402923},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3355114},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24658582},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.17382044},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.16723967},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.1006878},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2293240","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1981572319","https://openalex.org/W2051596736","https://openalex.org/W2124562516","https://openalex.org/W2133665775","https://openalex.org/W2141689871","https://openalex.org/W2162692770","https://openalex.org/W2163605009","https://openalex.org/W2294857031","https://openalex.org/W2509123681","https://openalex.org/W3102733987","https://openalex.org/W4246497475","https://openalex.org/W641186146"],"related_works":["https://openalex.org/W4312096575","https://openalex.org/W4221158116","https://openalex.org/W3027116454","https://openalex.org/W2986204340","https://openalex.org/W2943685190","https://openalex.org/W2903975231","https://openalex.org/W2539553977","https://openalex.org/W2096935541","https://openalex.org/W2033549879","https://openalex.org/W2013629269"],"abstract_inverted_index":{"Computed":[0],"Tomography":[1],"(CT)":[2],"is":[3,62,123],"one":[4],"of":[5,24,78,119,215],"the":[6,20,46,51,56,135,142,151,156,160,187,200,208,213,216,239,244,255],"most":[7],"important":[8],"medical":[9],"imaging":[10,72],"modality.":[11],"CT":[12,32,47,71,80,109,121,191,256],"images":[13,33,81,122,128,137,145,152,192],"can":[14,251],"be":[15,252],"used":[16,139,253],"to":[17,27,36,64,140,193,203],"assist":[18],"in":[19,70,95,220,254],"detection":[21],"and":[22,26,55,75,100,129,167,172,175,229],"diagnosis":[23,74],"lesions":[25],"facilitate":[28],"follow-up":[29],"treatment.":[30,76],"However,":[31,90],"are":[34,40,84,93,153,236],"vulnerable":[35],"noise.":[37],"Actually,":[38],"there":[39],"two":[41],"major":[42],"source":[43],"intrinsically":[44],"causing":[45],"data":[48],"noise,":[49,164],"i.e.,":[50],"X-ray":[52],"photo":[53],"statistics":[54],"electronic":[57],"noise":[58],"background.":[59],"Therefore,":[60],"it":[61],"necessary":[63],"doing":[65],"image":[66,110,163,170,257],"quality":[67,111,258],"assessment":[68,112],"(IQA)":[69],"before":[73],"Most":[77],"existing":[79],"IQA":[82,249],"methods":[83,92],"based":[85,248],"on":[86],"human":[87],"observer":[88],"study.":[89],"these":[91],"impractical":[94],"clinical":[96],"for":[97,185],"their":[98],"complex":[99],"time-consuming.":[101],"In":[102],"this":[103],"paper,":[104],"we":[105,198],"presented":[106,245],"a":[107,183],"blind":[108],"via":[113],"deep":[114,217,246],"learning":[115,186,218,247],"strategy.":[116],"A":[117],"database":[118],"1500":[120],"constructed,":[124],"containing":[125],"300":[126],"high-quality":[127,136],"1200":[130],"corresponding":[131,143],"noisy":[132,144],"images.":[133],"Specifically,":[134],"were":[138],"simulate":[141],"at":[146],"four":[147],"different":[148],"doses.":[149],"Then,":[150,197],"scored":[154],"by":[155,159],"experienced":[157],"radiologists":[158],"following":[161],"attributes:":[162],"artifacts,":[165],"edge":[166],"structure,":[168],"overall":[169],"quality,":[171],"tumor":[173],"size":[174],"boundary":[176],"estimation":[177],"with":[178],"five-point":[179],"scale.":[180],"We":[181],"trained":[182],"network":[184,219],"non-liner":[188],"map":[189],"from":[190,207],"subjective":[194],"evaluation":[195],"scores.":[196],"load":[199],"pre-trained":[201],"model":[202],"yield":[204],"predicted":[205],"score":[206],"test":[209],"image.":[210],"To":[211],"demonstrate":[212,242],"performance":[214],"IQA,":[221],"correlation":[222],"coefficients:":[223],"Pearson":[224],"Linear":[225],"Correlation":[226,233],"Coefficient":[227,234],"(PLCC)":[228],"Spearman":[230],"Rank":[231],"Order":[232],"(SROCC)":[235],"utilized.":[237],"And":[238],"experimental":[240],"result":[241],"that":[243],"strategy":[250],"assessment.":[259]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2793894139","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-10-23T15:42:24.370738","created_date":"2018-03-29"}