{"id":"https://openalex.org/W4366967245","doi":"https://doi.org/10.1109/wi-iat55865.2022.00023","title":"Discovering Causal Rules in Knowledge Graphs using Graph Embeddings","display_name":"Discovering Causal Rules in Knowledge Graphs using Graph Embeddings","publication_year":2022,"publication_date":"2022-11-01","ids":{"openalex":"https://openalex.org/W4366967245","doi":"https://doi.org/10.1109/wi-iat55865.2022.00023"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wi-iat55865.2022.00023","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049252290","display_name":"Lucas Simonne","orcid":null},"institutions":[{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]},{"id":"https://openalex.org/I277688954","display_name":"Universit\u00e9 Paris-Saclay","ror":"https://ror.org/03xjwb503","country_code":"FR","type":"education","lineage":["https://openalex.org/I277688954"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Lucas Simonne","raw_affiliation_strings":["Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France"],"affiliations":[{"raw_affiliation_string":"Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France","institution_ids":["https://openalex.org/I1294671590","https://openalex.org/I277688954"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052564510","display_name":"Nathalie Pernelle","orcid":"https://orcid.org/0000-0003-1487-393X"},"institutions":[{"id":"https://openalex.org/I277688954","display_name":"Universit\u00e9 Paris-Saclay","ror":"https://ror.org/03xjwb503","country_code":"FR","type":"education","lineage":["https://openalex.org/I277688954"]},{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Nathalie Pernelle","raw_affiliation_strings":["Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France"],"affiliations":[{"raw_affiliation_string":"Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France","institution_ids":["https://openalex.org/I277688954","https://openalex.org/I1294671590"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082193370","display_name":"Fatiha Sa\u00efs","orcid":"https://orcid.org/0000-0002-6995-2785"},"institutions":[{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]},{"id":"https://openalex.org/I277688954","display_name":"Universit\u00e9 Paris-Saclay","ror":"https://ror.org/03xjwb503","country_code":"FR","type":"education","lineage":["https://openalex.org/I277688954"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Fatiha Sa\u00efs","raw_affiliation_strings":["Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France"],"affiliations":[{"raw_affiliation_string":"Université Paris-Saclay,LISN, CNRS UMR 9015,Orsay,France","institution_ids":["https://openalex.org/I1294671590","https://openalex.org/I277688954"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038508061","display_name":"Rallou Thomopoulos","orcid":"https://orcid.org/0000-0002-3218-9472"},"institutions":[{"id":"https://openalex.org/I4210088087","display_name":"Ing\u00e9nierie des Agropolym\u00e8res et Technologies Emergentes","ror":"https://ror.org/0000n5x09","country_code":"FR","type":"facility","lineage":["https://openalex.org/I131077856","https://openalex.org/I19894307","https://openalex.org/I24906876","https://openalex.org/I4210088087","https://openalex.org/I4210117091","https://openalex.org/I4399657933"]},{"id":"https://openalex.org/I4210088668","display_name":"Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement","ror":"https://ror.org/003vg9w96","country_code":"FR","type":"government","lineage":["https://openalex.org/I4210088668"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Rallou Thomopoulos","raw_affiliation_strings":["UMR IATE INRAE,Montpellier,France"],"affiliations":[{"raw_affiliation_string":"UMR IATE INRAE,Montpellier,France","institution_ids":["https://openalex.org/I4210088087","https://openalex.org/I4210088668"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"95","last_page":"102"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/knowledge-graph","display_name":"Knowledge graph","score":0.6051835}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6366236},{"id":"https://openalex.org/C2987255567","wikidata":"https://www.wikidata.org/wiki/Q33002955","display_name":"Knowledge graph","level":2,"score":0.6051835},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.59147274},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4894506},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.46414793},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39399967},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3579109},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3500216},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20553485},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wi-iat55865.2022.00023","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.science/hal-04420900","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.46,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1822863177","https://openalex.org/W1992862710","https://openalex.org/W2028722992","https://openalex.org/W2029941278","https://openalex.org/W2132917208","https://openalex.org/W2143891888","https://openalex.org/W2151502664","https://openalex.org/W2155163959","https://openalex.org/W2239873446","https://openalex.org/W2300469216","https://openalex.org/W2736743091","https://openalex.org/W2767287441","https://openalex.org/W2776110560","https://openalex.org/W2805596387","https://openalex.org/W2964732194","https://openalex.org/W3164202548","https://openalex.org/W3164758947","https://openalex.org/W3194828395","https://openalex.org/W3196898073","https://openalex.org/W3217187055","https://openalex.org/W4239728164","https://openalex.org/W4313729819"],"related_works":["https://openalex.org/W4301594054","https://openalex.org/W3125889879","https://openalex.org/W3125188128","https://openalex.org/W3124422538","https://openalex.org/W3046451053","https://openalex.org/W2961085424","https://openalex.org/W2794488505","https://openalex.org/W2295467472","https://openalex.org/W2097909533","https://openalex.org/W1972035260"],"abstract_inverted_index":{"Discovering":[0],"causal":[1,37,89],"relationships":[2,14],"is":[3,22,72,120,137],"the":[4,18,49,131,134],"goal":[5],"of":[6,133],"many":[7,149],"experiments":[8,109],"in":[9,15,54,59,74,91],"science.":[10],"To":[11,86],"discover":[12,36,87,140],"these":[13],"observational":[16,41],"data,":[17],"potential":[19],"outcome":[20],"framework":[21,65],"widely":[23],"used.":[24],"Within":[25],"this":[26,64,93],"framework,":[27],"a":[28,60,96,101,142],"recent":[29],"approach":[30,98,119],"uses":[31,100],"Knowledge":[32],"Graphs":[33],"(KGs)":[34],"to":[35,47,57,122,130,139],"rules":[38,44,90,146],"embedded":[39],"within":[40],"data.":[42],"Such":[43],"were":[45],"found":[46],"express":[48],"following":[50],"relationship:":[51],"that":[52,99,117,147],"differences":[53,58,151],"treatments":[55],"lead":[56],"studied":[61,143],"characteristic.":[62],"However,":[63],"relies":[66],"on":[67,105,110],"matching":[68,102],"similar":[69],"instances":[70],"which":[71],"challenging":[73],"knowledge":[75],"graphs":[76],"since":[77],"instance":[78],"descriptions":[79],"can":[80],"be":[81],"complex,":[82],"incomplete,":[83],"or":[84],"erroneous.":[85],"differential":[88],"KGs,":[92],"paper":[94],"presents":[95],"new":[97],"method":[103],"based":[104],"graph":[106],"embeddings.":[107],"Our":[108],"KGs":[111],"from":[112],"two":[113],"different":[114],"domains":[115],"show":[116],"our":[118],"robust":[121],"incomplete":[123],"KGs.":[124],"Not":[125],"only":[126],"that,":[127],"but":[128],"compared":[129],"state":[132],"art,":[135],"it":[136],"able":[138],"for":[141],"characteristic":[144],"meaningful":[145],"explain":[148],"more":[150],"than":[152],"previously":[153],"found.":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366967245","counts_by_year":[],"updated_date":"2024-12-10T03:21:17.418406","created_date":"2023-04-26"}