iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/TPAMI.2020.3020300
{"id":"https://openalex.org/W3082366738","doi":"https://doi.org/10.1109/tpami.2020.3020300","title":"You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization","display_name":"You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization","publication_year":2020,"publication_date":"2020-08-31","ids":{"openalex":"https://openalex.org/W3082366738","doi":"https://doi.org/10.1109/tpami.2020.3020300","mag":"3082366738","pmid":"https://pubmed.ncbi.nlm.nih.gov/32866093"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2020.3020300","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1811.01567","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044759284","display_name":"Xinbang Zhang","orcid":"https://orcid.org/0000-0002-8329-5363"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinbang Zhang","raw_affiliation_strings":["Institute of Automation, Chinese Academy of Science, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Automation, Chinese Academy of Science, Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017829201","display_name":"Zehao Huang","orcid":"https://orcid.org/0000-0003-1653-208X"},"institutions":[{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zehao Huang","raw_affiliation_strings":["School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100742122","display_name":"Naiyan Wang","orcid":"https://orcid.org/0000-0002-0526-3331"},"institutions":[{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Naiyan Wang","raw_affiliation_strings":["School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040673285","display_name":"Shiming Xiang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiming Xiang","raw_affiliation_strings":["Institute of Automation, Chinese Academy of Science, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Automation, Chinese Academy of Science, Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100435212","display_name":"Chunhong Pan","orcid":"https://orcid.org/0000-0001-7433-4474"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chunhong Pan","raw_affiliation_strings":["Tusimple, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tusimple, Beijing, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.625,"has_fulltext":false,"cited_by_count":45,"citation_normalized_percentile":{"value":0.999939,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"43","issue":"9","first_page":"2891","last_page":"2904"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.6084157},{"id":"https://openalex.org/keywords/pascal","display_name":"Pascal (unit)","score":0.5953892},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.507212},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41316333}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81907463},{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.6084157},{"id":"https://openalex.org/C75608658","wikidata":"https://www.wikidata.org/wiki/Q44395","display_name":"Pascal (unit)","level":2,"score":0.5953892},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57437027},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5099703},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.4406157},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.42054826},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41316333},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2020.3020300","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.01567","pdf_url":"https://arxiv.org/pdf/1811.01567","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/32866093","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.01567","pdf_url":"https://arxiv.org/pdf/1811.01567","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.62,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61976208"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"91646207"}],"datasets":[],"versions":[],"referenced_works_count":90,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W2037227137","https://openalex.org/W2095705004","https://openalex.org/W2097117768","https://openalex.org/W2108563286","https://openalex.org/W2108604074","https://openalex.org/W2111935653","https://openalex.org/W2114766824","https://openalex.org/W2117539524","https://openalex.org/W2121238376","https://openalex.org/W2121863487","https://openalex.org/W2124659975","https://openalex.org/W2125389748","https://openalex.org/W2138784882","https://openalex.org/W2140619591","https://openalex.org/W2143612262","https://openalex.org/W2160815625","https://openalex.org/W2163605009","https://openalex.org/W2168894214","https://openalex.org/W2171658832","https://openalex.org/W2183341477","https://openalex.org/W2186615578","https://openalex.org/W2194775991","https://openalex.org/W2257979135","https://openalex.org/W2302255633","https://openalex.org/W2338908902","https://openalex.org/W2408279554","https://openalex.org/W2412782625","https://openalex.org/W2495425901","https://openalex.org/W2549139847","https://openalex.org/W2553303224","https://openalex.org/W2594529350","https://openalex.org/W2611669764","https://openalex.org/W2612445135","https://openalex.org/W2630837129","https://openalex.org/W2746314669","https://openalex.org/W2756085244","https://openalex.org/W2758000438","https://openalex.org/W2766447205","https://openalex.org/W2796265726","https://openalex.org/W2810075754","https://openalex.org/W2883111419","https://openalex.org/W2883780447","https://openalex.org/W2885820039","https://openalex.org/W2886851211","https://openalex.org/W2894651257","https://openalex.org/W2896409484","https://openalex.org/W2897295818","https://openalex.org/W2903711666","https://openalex.org/W2903852246","https://openalex.org/W2913535645","https://openalex.org/W2940262938","https://openalex.org/W2949264490","https://openalex.org/W2949941638","https://openalex.org/W2951104886","https://openalex.org/W2960010704","https://openalex.org/W2962746461","https://openalex.org/W2962847160","https://openalex.org/W2962851801","https://openalex.org/W2962860921","https://openalex.org/W2962965870","https://openalex.org/W2963000224","https://openalex.org/W2963125010","https://openalex.org/W2963145730","https://openalex.org/W2963163009","https://openalex.org/W2963263347","https://openalex.org/W2963374479","https://openalex.org/W2963382930","https://openalex.org/W2963387524","https://openalex.org/W2963446712","https://openalex.org/W2963674932","https://openalex.org/W2963778169","https://openalex.org/W2963821229","https://openalex.org/W2963918968","https://openalex.org/W2963981420","https://openalex.org/W2964001144","https://openalex.org/W2964081807","https://openalex.org/W2964118469","https://openalex.org/W2964259004","https://openalex.org/W2964331719","https://openalex.org/W2965658867","https://openalex.org/W2967733054","https://openalex.org/W2972830778","https://openalex.org/W3118608800","https://openalex.org/W4244393449","https://openalex.org/W4285719527","https://openalex.org/W4297775537","https://openalex.org/W4297786033","https://openalex.org/W4300687381","https://openalex.org/W4300687870"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2069133146","https://openalex.org/W2028665553","https://openalex.org/W1663079876"],"abstract_inverted_index":{"Recently":[0],"neural":[1],"architecture":[2],"search":[3,24],"(NAS)":[4],"has":[5],"raised":[6],"great":[7],"interest":[8],"in":[9,56,94,164],"both":[10,113],"academia":[11],"and":[12,22,73,100,117,130],"industry.":[13],"However,":[14],"it":[15,120],"remains":[16],"challenging":[17],"because":[18],"of":[19,27,59,115],"its":[20],"huge":[21],"non-continuous":[23],"space.":[25],"Instead":[26],"applying":[28],"evolutionary":[29],"algorithm":[30],"or":[31],"reinforcement":[32],"learning":[33],"as":[34],"previous":[35],"works,":[36],"this":[37,64],"paper":[38],"proposes":[39],"a":[40,69],"direct":[41],"sparse":[42,86],"optimization":[43,103],"NAS":[44],"(DSO-NAS)":[45],"method.":[46],"The":[47],"motivation":[48],"behind":[49],"DSO-NAS":[50,139,152,172],"is":[51,105,188],"to":[52,78,90,107,125],"address":[53],"the":[54,57,80,95,136,149,183],"task":[55],"view":[58],"model":[60],"pruning.":[61],"To":[62],"achieve":[63,174],"goal,":[65],"we":[66],"start":[67],"from":[68],"completely":[70],"connected":[71],"block,":[72],"then":[74],"introduce":[75],"scaling":[76],"factors":[77],"scale":[79],"information":[81],"flow":[82],"between":[83],"operations.":[84],"Next,":[85],"regularizations":[87],"are":[88],"imposed":[89],"prune":[91],"useless":[92],"connections":[93],"architecture.":[96],"Lastly,":[97],"an":[98,141],"efficient":[99],"theoretically":[101],"sound":[102],"method":[104,111],"derived":[106],"solve":[108],"it.":[109],"Our":[110],"enjoys":[112],"advantages":[114],"differentiability":[116],"efficiency,":[118],"therefore":[119],"can":[121],"be":[122],"directly":[123],"applied":[124],"large":[126],"datasets":[127],"like":[128],"ImageNet":[129,150],"tasks":[131],"beyond":[132],"classification.":[133],"Particularly,":[134],"on":[135,148,182],"CIFAR-10":[137],"dataset,":[138],"achieves":[140,153],"average":[142],"test":[143,156],"error":[144,157],"2.74":[145],"percent,":[146],"while":[147],"dataset":[151],"25.4":[154],"percent":[155],"under":[158],"600M":[159],"FLOPs":[160],"with":[161,178],"8":[162],"GPUs":[163],"18":[165],"hours.":[166],"As":[167],"for":[168],"semantic":[169],"segmentation":[170],"task,":[171],"also":[173],"competitive":[175],"result":[176],"compared":[177],"manually":[179],"designed":[180],"architectures":[181],"PASCAL":[184],"VOC":[185],"dataset.":[186],"Code":[187],"available":[189],"at":[190],"https://github.com/XinbangZhang/DSO-NAS.":[191]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3082366738","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":12},{"year":2020,"cited_by_count":8}],"updated_date":"2024-12-03T12:10:00.963945","created_date":"2020-09-08"}