{"id":"https://openalex.org/W2963240457","doi":"https://doi.org/10.1109/tpami.2017.2651818","title":"Measuring and Predicting Tag Importance for Image Retrieval","display_name":"Measuring and Predicting Tag Importance for Image Retrieval","publication_year":2017,"publication_date":"2017-01-11","ids":{"openalex":"https://openalex.org/W2963240457","doi":"https://doi.org/10.1109/tpami.2017.2651818","mag":"2963240457","pmid":"https://pubmed.ncbi.nlm.nih.gov/28092521"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2017.2651818","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1602.08680","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040091310","display_name":"Shangwen Li","orcid":"https://orcid.org/0000-0002-9867-2387"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shangwen Li","raw_affiliation_strings":["Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA"],"affiliations":[{"raw_affiliation_string":"Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017846156","display_name":"Sanjay Purushotham","orcid":"https://orcid.org/0000-0003-4315-7916"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sanjay Purushotham","raw_affiliation_strings":["Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA"],"affiliations":[{"raw_affiliation_string":"Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100418585","display_name":"Chen Chen","orcid":"https://orcid.org/0000-0003-4933-0863"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chen Chen","raw_affiliation_strings":["Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA"],"affiliations":[{"raw_affiliation_string":"Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074059073","display_name":"Yuzhuo Ren","orcid":null},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yuzhuo Ren","raw_affiliation_strings":["Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA"],"affiliations":[{"raw_affiliation_string":"Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001082656","display_name":"C.\u2010C. Jay Kuo","orcid":"https://orcid.org/0000-0001-9474-5035"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"C.-C. Jay Kuo","raw_affiliation_strings":["Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA"],"affiliations":[{"raw_affiliation_string":"Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA","institution_ids":["https://openalex.org/I1174212"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.961,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":30,"citation_normalized_percentile":{"value":0.999934,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"39","issue":"12","first_page":"2423","last_page":"2436"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.567361},{"id":"https://openalex.org/keywords/semantic-gap","display_name":"Semantic gap","score":0.56554574},{"id":"https://openalex.org/keywords/image-captioning","display_name":"Image Captioning","score":0.565125},{"id":"https://openalex.org/keywords/content-based-image-retrieval","display_name":"Content-Based Image Retrieval","score":0.548887},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.547973},{"id":"https://openalex.org/keywords/image-annotation","display_name":"Image Annotation","score":0.541254},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.4862784},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.468703},{"id":"https://openalex.org/keywords/semantic-feature","display_name":"Semantic feature","score":0.41747627}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8536296},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66148245},{"id":"https://openalex.org/C1667742","wikidata":"https://www.wikidata.org/wiki/Q10927554","display_name":"Image retrieval","level":3,"score":0.6338052},{"id":"https://openalex.org/C86034646","wikidata":"https://www.wikidata.org/wiki/Q474311","display_name":"Semantic gap","level":4,"score":0.56554574},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.53458595},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.53134286},{"id":"https://openalex.org/C189391414","wikidata":"https://www.wikidata.org/wiki/Q7936579","display_name":"Visual Word","level":4,"score":0.52049965},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.4862784},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.468703},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.44789582},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43818128},{"id":"https://openalex.org/C2781122975","wikidata":"https://www.wikidata.org/wiki/Q16928266","display_name":"Semantic feature","level":2,"score":0.41747627},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.4017215},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.38985842},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35431746},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2017.2651818","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1602.08680","pdf_url":"http://arxiv.org/pdf/1602.08680","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/28092521","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1602.08680","pdf_url":"http://arxiv.org/pdf/1602.08680","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":61,"referenced_works":["https://openalex.org/W1202352811","https://openalex.org/W1514027499","https://openalex.org/W1515020792","https://openalex.org/W1521626219","https://openalex.org/W1523385540","https://openalex.org/W1861492603","https://openalex.org/W1908139891","https://openalex.org/W1938167356","https://openalex.org/W2017814585","https://openalex.org/W2025341678","https://openalex.org/W2029163572","https://openalex.org/W2031248101","https://openalex.org/W2059952380","https://openalex.org/W2067816745","https://openalex.org/W2070753207","https://openalex.org/W2075115202","https://openalex.org/W2082453965","https://openalex.org/W2096544045","https://openalex.org/W2100235303","https://openalex.org/W2100379672","https://openalex.org/W2106277773","https://openalex.org/W2108598243","https://openalex.org/W2109305780","https://openalex.org/W2110764733","https://openalex.org/W2111993661","https://openalex.org/W2118597426","https://openalex.org/W2119775030","https://openalex.org/W2123442489","https://openalex.org/W2130055251","https://openalex.org/W2130660124","https://openalex.org/W2134670479","https://openalex.org/W2136064009","https://openalex.org/W2136480620","https://openalex.org/W2138118304","https://openalex.org/W2140036298","https://openalex.org/W2141697695","https://openalex.org/W2146103513","https://openalex.org/W2147069236","https://openalex.org/W2152245445","https://openalex.org/W2157530295","https://openalex.org/W2161343988","https://openalex.org/W2163605009","https://openalex.org/W2163740729","https://openalex.org/W2165947725","https://openalex.org/W2167407098","https://openalex.org/W2168356304","https://openalex.org/W2181691731","https://openalex.org/W2184188583","https://openalex.org/W2277195237","https://openalex.org/W2294130536","https://openalex.org/W2429914308","https://openalex.org/W2499256577","https://openalex.org/W2613718673","https://openalex.org/W2913081710","https://openalex.org/W2949474740","https://openalex.org/W2953106684","https://openalex.org/W2963346784","https://openalex.org/W2970241052","https://openalex.org/W4206733017","https://openalex.org/W4285719527","https://openalex.org/W92662927"],"related_works":["https://openalex.org/W2735794310","https://openalex.org/W2384506582","https://openalex.org/W2373526234","https://openalex.org/W2370180225","https://openalex.org/W2186394444","https://openalex.org/W2140369944","https://openalex.org/W2120663665","https://openalex.org/W2083396186","https://openalex.org/W2071180033","https://openalex.org/W2002918846"],"abstract_inverted_index":{"Textual":[0],"data":[1],"such":[2],"as":[3,33,115],"tags,":[4],"sentence":[5,111],"descriptions":[6],"are":[7,31],"combined":[8],"with":[9,191],"visual":[10,45,166],"cues":[11],"to":[12,56,79,99,126,143,159,171],"reduce":[13],"the":[14,69,76,82,101,116,148,152,161,164,188],"semantic":[15,130],"gap":[16],"for":[17],"image":[18,89,110,165],"retrieval":[19,58,174],"applications":[20],"in":[21,36,42,88],"today's":[22],"Multimodal":[23],"Image":[24],"Retrieval":[25],"(MIR)":[26],"systems.":[27,200],"However,":[28],"all":[29],"tags":[30,108],"treated":[32],"equally":[34],"important":[35],"these":[37],"systems,":[38],"which":[39],"may":[40],"result":[41],"misalignment":[43],"between":[44,163],"and":[46,85,106,131,168],"textual":[47],"modalities":[48],"during":[49],"MIR":[50,190,199],"training.":[51],"This":[52],"will":[53],"further":[54],"lead":[55],"degenerated":[57],"performance":[59,185],"at":[60],"query":[61],"time.":[62],"To":[63,91],"address":[64],"this":[65,114],"issue,":[66],"we":[67,94,119],"investigate":[68],"problem":[70],"of":[71,104,147,187],"tag":[72,83,122,169],"importance":[73,84,103,123,170],"prediction,":[74],"where":[75],"goal":[77],"is":[78,141,157],"automatically":[80],"predict":[81],"use":[86],"it":[87],"retrieval.":[90],"achieve":[92],"this,":[93],"first":[95],"propose":[96],"a":[97,121,183],"method":[98],"measure":[100],"relative":[102],"object":[105],"scene":[107],"from":[109],"descriptions.":[112],"Using":[113],"ground":[117],"truth,":[118],"present":[120],"prediction":[124,149],"model":[125],"jointly":[127],"exploit":[128],"visual,":[129],"context":[132],"cues.":[133],"The":[134],"Structural":[135],"Support":[136],"Vector":[137],"Machine":[138],"(SSVM)":[139],"formulation":[140],"adopted":[142],"ensure":[144],"efficient":[145],"training":[146],"model.":[150],"Then,":[151],"Canonical":[153],"Correlation":[154],"Analysis":[155],"(CCA)":[156],"employed":[158],"learn":[160],"relation":[162],"feature":[167],"obtain":[172],"robust":[173],"performance.":[175],"Experimental":[176],"results":[177],"on":[178],"three":[179],"real-world":[180],"datasets":[181],"show":[182],"significant":[184],"improvement":[186],"proposed":[189],"Tag":[192],"Importance":[193],"Prediction":[194],"(MIR/TIP)":[195],"system":[196],"over":[197],"other":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963240457","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":9},{"year":2017,"cited_by_count":3}],"updated_date":"2024-11-27T19:01:47.913550","created_date":"2019-07-30"}