iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/TIP.2020.3036779
{"id":"https://openalex.org/W3098087652","doi":"https://doi.org/10.1109/tip.2020.3036779","title":"Zero-Shot Learning to Index on Semantic Trees for Scalable Image Retrieval","display_name":"Zero-Shot Learning to Index on Semantic Trees for Scalable Image Retrieval","publication_year":2020,"publication_date":"2020-11-13","ids":{"openalex":"https://openalex.org/W3098087652","doi":"https://doi.org/10.1109/tip.2020.3036779","mag":"3098087652","pmid":"https://pubmed.ncbi.nlm.nih.gov/33186117"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.3036779","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025341442","display_name":"Shichao Kan","orcid":"https://orcid.org/0000-0003-0097-6196"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shichao Kan","raw_affiliation_strings":["Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","Institute of Information Science, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Information Science, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038490168","display_name":"Yi Cen","orcid":"https://orcid.org/0000-0002-4540-3992"},"institutions":[{"id":"https://openalex.org/I145897649","display_name":"Minzu University of China","ror":"https://ror.org/0044e2g62","country_code":"CN","type":"education","lineage":["https://openalex.org/I145897649"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Cen","raw_affiliation_strings":["School of Information Engineering, Minzu University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Information Engineering, Minzu University of China, Beijing, China","institution_ids":["https://openalex.org/I145897649"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082462498","display_name":"Yigang Cen","orcid":"https://orcid.org/0000-0001-6255-9422"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yigang Cen","raw_affiliation_strings":["Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","Institute of Information Science, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Information Science, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033701140","display_name":"Vladimir Mladenovi\u0107","orcid":"https://orcid.org/0000-0001-8530-2312"},"institutions":[{"id":"https://openalex.org/I14245010","display_name":"University of Kragujevac","ror":"https://ror.org/04f7vj627","country_code":"RS","type":"education","lineage":["https://openalex.org/I14245010"]}],"countries":["RS"],"is_corresponding":false,"raw_author_name":"Mladenovic Vladimir","raw_affiliation_strings":["Faculty of Technical Sciences, University of Kragujevac, \u010ca\u010dak, Serbia"],"affiliations":[{"raw_affiliation_string":"Faculty of Technical Sciences, University of Kragujevac, \u010ca\u010dak, Serbia","institution_ids":["https://openalex.org/I14245010"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019791343","display_name":"Yang Li","orcid":"https://orcid.org/0000-0002-8372-1481"},"institutions":[{"id":"https://openalex.org/I76835614","display_name":"University of Missouri","ror":"https://ror.org/02ymw8z06","country_code":"US","type":"education","lineage":["https://openalex.org/I76835614"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yang Li","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA","institution_ids":["https://openalex.org/I76835614"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110252153","display_name":"Zhihai He","orcid":null},"institutions":[{"id":"https://openalex.org/I76835614","display_name":"University of Missouri","ror":"https://ror.org/02ymw8z06","country_code":"US","type":"education","lineage":["https://openalex.org/I76835614"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhihai He","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA","institution_ids":["https://openalex.org/I76835614"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.262,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999938,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"30","issue":null,"first_page":"501","last_page":"516"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.55891},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.547651},{"id":"https://openalex.org/keywords/content-based-image-retrieval","display_name":"Content-Based Image Retrieval","score":0.542632},{"id":"https://openalex.org/keywords/object-recognition","display_name":"Object Recognition","score":0.52976},{"id":"https://openalex.org/keywords/shape-matching","display_name":"Shape Matching","score":0.529374},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.4222266},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41467407}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.759395},{"id":"https://openalex.org/C75165309","wikidata":"https://www.wikidata.org/wiki/Q2258979","display_name":"Search engine indexing","level":2,"score":0.7037652},{"id":"https://openalex.org/C1667742","wikidata":"https://www.wikidata.org/wiki/Q10927554","display_name":"Image retrieval","level":3,"score":0.6134638},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5918642},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5578434},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.4222266},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41485208},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41467407},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.41078767},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4036596},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33530217},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.27904505},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.1301094},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.3036779","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/33186117","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62011530042"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61872034"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62062021"},{"funder":"https://openalex.org/F4320322725","funder_display_name":"China Scholarship Council","award_id":"201907090007"},{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"4202055"},{"funder":"https://openalex.org/F4320323236","funder_display_name":"Natural Science Foundation of Guizhou Province","award_id":"[2019]1064"}],"datasets":[],"versions":[],"referenced_works_count":64,"referenced_works":["https://openalex.org/W1985879444","https://openalex.org/W1997944350","https://openalex.org/W2024668293","https://openalex.org/W2041878876","https://openalex.org/W2072240081","https://openalex.org/W2077815765","https://openalex.org/W2086179657","https://openalex.org/W2086504823","https://openalex.org/W2088171019","https://openalex.org/W2095705004","https://openalex.org/W2096077837","https://openalex.org/W2097117768","https://openalex.org/W2097921974","https://openalex.org/W2099253838","https://openalex.org/W2117539524","https://openalex.org/W2121456571","https://openalex.org/W2124509324","https://openalex.org/W2128017662","https://openalex.org/W2131846894","https://openalex.org/W2132234208","https://openalex.org/W2133296809","https://openalex.org/W2133995768","https://openalex.org/W2134446283","https://openalex.org/W2138064700","https://openalex.org/W2153636661","https://openalex.org/W2155893237","https://openalex.org/W2156387975","https://openalex.org/W2170605888","https://openalex.org/W2171572695","https://openalex.org/W2194775991","https://openalex.org/W2427881153","https://openalex.org/W2468843375","https://openalex.org/W2604361715","https://openalex.org/W2605321582","https://openalex.org/W2807884750","https://openalex.org/W2910453440","https://openalex.org/W2917267381","https://openalex.org/W2919919296","https://openalex.org/W2922521335","https://openalex.org/W2948303601","https://openalex.org/W2962648813","https://openalex.org/W2962990451","https://openalex.org/W2963026686","https://openalex.org/W2963113119","https://openalex.org/W2963213349","https://openalex.org/W2963284996","https://openalex.org/W2963469388","https://openalex.org/W2964271799","https://openalex.org/W2965744772","https://openalex.org/W2969383965","https://openalex.org/W2972421866","https://openalex.org/W2979300990","https://openalex.org/W2982512683","https://openalex.org/W2982863468","https://openalex.org/W2998241033","https://openalex.org/W2998702515","https://openalex.org/W3004085219","https://openalex.org/W3012716293","https://openalex.org/W3034277922","https://openalex.org/W3034978279","https://openalex.org/W3035014997","https://openalex.org/W3035254087","https://openalex.org/W3103605339","https://openalex.org/W3104374384"],"related_works":["https://openalex.org/W4210535024","https://openalex.org/W4206019083","https://openalex.org/W3125011624","https://openalex.org/W3024364549","https://openalex.org/W2805504108","https://openalex.org/W2370378377","https://openalex.org/W2054476758","https://openalex.org/W2048865712","https://openalex.org/W1976265003","https://openalex.org/W1508631387"],"abstract_inverted_index":{"In":[0],"this":[1],"study,":[2],"we":[3,62],"develop":[4],"a":[5,38,114,168,193],"new":[6,51,200],"approach,":[7],"called":[8],"zero-shot":[9,122],"learning":[10],"to":[11,28,50,94,103],"index":[12,77,106,149,152,190],"on":[13,58,167,176],"semantic":[14,40,170],"trees":[15],"(LTI-ST),":[16],"for":[17,68,126],"efficient":[18,65],"image":[19,23,72,76,136],"indexing":[20,66,137],"and":[21,129,132,138,165,179],"scalable":[22,130],"retrieval.":[24],"Our":[25,172],"method":[26,82,187],"learns":[27],"model":[29],"the":[30,69,84,96,100,105,118,135,146,157,184,198],"inherent":[31],"correlation":[32,60],"structure":[33,153],"between":[34],"visual":[35],"representations":[36],"using":[37,156],"binary":[39,163],"tree":[41],"from":[42,54,117],"training":[43,119],"images":[44,53,98],"which":[45,202],"can":[46],"be":[47],"effectively":[48],"transferred":[49],"test":[52,71,97],"unknown":[55],"classes.":[56],"Based":[57],"predicted":[59,112],"structure,":[61],"construct":[63,104],"an":[64],"scheme":[67],"whole":[70],"set.":[73,120],"Unlike":[74],"existing":[75,147,189],"methods,":[78,150],"our":[79,151],"proposed":[80,185],"LTI-ST":[81,158,186],"has":[83],"following":[85],"two":[86],"unique":[87],"characteristics.":[88],"First,":[89],"it":[90,109],"does":[91],"not":[92],"need":[93],"analyze":[95],"in":[99,206],"query":[101],"database":[102],"structure.":[107],"Instead,":[108],"is":[110,124,154],"directly":[111],"by":[113,192],"network":[115,161],"learnt":[116,155],"This":[121],"capability":[123],"critical":[125],"flexible,":[127],"distributed,":[128],"implementation":[131],"deployment":[133],"of":[134],"retrieval":[139],"services":[140],"at":[141],"large":[142,194],"scales.":[143],"Second,":[144],"unlike":[145],"distance-based":[148],"deep":[159],"neural":[160],"with":[162],"encoding":[164],"decoding":[166],"hierarchical":[169],"tree.":[171],"extensive":[173],"experimental":[174],"results":[175],"benchmark":[177],"datasets":[178],"ablation":[180],"studies":[181],"demonstrate":[182],"that":[183],"outperforms":[188],"methods":[191],"margin":[195],"while":[196],"providing":[197],"above":[199],"capabilities":[201],"are":[203],"highly":[204],"desirable":[205],"practice.":[207]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3098087652","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-06T04:47:28.272766","created_date":"2020-11-23"}