iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/TIP.2015.2447836
{"id":"https://openalex.org/W1607704809","doi":"https://doi.org/10.1109/tip.2015.2447836","title":"Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering","display_name":"Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering","publication_year":2015,"publication_date":"2015-06-19","ids":{"openalex":"https://openalex.org/W1607704809","doi":"https://doi.org/10.1109/tip.2015.2447836","mag":"1607704809","pmid":"https://pubmed.ncbi.nlm.nih.gov/26099147"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2015.2447836","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089831862","display_name":"Milad Niknejad","orcid":"https://orcid.org/0000-0001-9361-6311"},"institutions":[{"id":"https://openalex.org/I261916979","display_name":"Islamic Azad University of Majlesi","ror":"https://ror.org/00jd71216","country_code":"IR","type":"education","lineage":["https://openalex.org/I261916979"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Milad Niknejad","raw_affiliation_strings":["Islamic Azad University, Majlesi Branch,Isfahan,Iran"],"affiliations":[{"raw_affiliation_string":"Islamic Azad University, Majlesi Branch,Isfahan,Iran","institution_ids":["https://openalex.org/I261916979"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052490368","display_name":"Hossein Rabbani","orcid":"https://orcid.org/0000-0002-0551-3636"},"institutions":[{"id":"https://openalex.org/I114982161","display_name":"Isfahan University of Medical Sciences","ror":"https://ror.org/04waqzz56","country_code":"IR","type":"education","lineage":["https://openalex.org/I114982161"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Hossein Rabbani","raw_affiliation_strings":["Department of Biomedical EngineeringMedical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran"],"affiliations":[{"raw_affiliation_string":"Department of Biomedical EngineeringMedical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran","institution_ids":["https://openalex.org/I114982161"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083199991","display_name":"Massoud Babaie\u2010Zadeh","orcid":"https://orcid.org/0000-0001-8864-4756"},"institutions":[{"id":"https://openalex.org/I133529467","display_name":"Sharif University of Technology","ror":"https://ror.org/024c2fq17","country_code":"IR","type":"education","lineage":["https://openalex.org/I133529467"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Massoud Babaie-Zadeh","raw_affiliation_strings":["Department of Electrical Engineering, Sharif university of Technology, Tehran, Iran"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Sharif university of Technology, Tehran, Iran","institution_ids":["https://openalex.org/I133529467"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.442,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":86,"citation_normalized_percentile":{"value":0.999939,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"24","issue":"11","first_page":"3624","last_page":"3636"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-denoising","display_name":"Image Denoising","score":0.586041},{"id":"https://openalex.org/keywords/image-fusion","display_name":"Image Fusion","score":0.54754},{"id":"https://openalex.org/keywords/sparse-representations","display_name":"Sparse Representations","score":0.503355},{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation (computer graphics)","score":0.42339003}],"concepts":[{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.7527884},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.61216545},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59503233},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5868979},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5322953},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.52793074},{"id":"https://openalex.org/C106430172","wikidata":"https://www.wikidata.org/wiki/Q6002272","display_name":"Image restoration","level":4,"score":0.5169946},{"id":"https://openalex.org/C177384507","wikidata":"https://www.wikidata.org/wiki/Q1149000","display_name":"Multivariate normal distribution","level":3,"score":0.44934237},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.42339003},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.41379938},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.39600614},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.36806226},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33567637},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.2843349},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.21049279},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2015.2447836","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/26099147","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.73}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1538205675","https://openalex.org/W1540596182","https://openalex.org/W1964394948","https://openalex.org/W1967414432","https://openalex.org/W1972168313","https://openalex.org/W1975120776","https://openalex.org/W1978749115","https://openalex.org/W1989638282","https://openalex.org/W1996856541","https://openalex.org/W2006262236","https://openalex.org/W2007463795","https://openalex.org/W2011773465","https://openalex.org/W2022337856","https://openalex.org/W2039487641","https://openalex.org/W2041823554","https://openalex.org/W2045079989","https://openalex.org/W2056370875","https://openalex.org/W2058005980","https://openalex.org/W2077646121","https://openalex.org/W2086962710","https://openalex.org/W2094037325","https://openalex.org/W2094952349","https://openalex.org/W2097073572","https://openalex.org/W2097323375","https://openalex.org/W2099244020","https://openalex.org/W2099641086","https://openalex.org/W2109320267","https://openalex.org/W2110206939","https://openalex.org/W2115415549","https://openalex.org/W2116554552","https://openalex.org/W2117154949","https://openalex.org/W2121058967","https://openalex.org/W2122111042","https://openalex.org/W2126922884","https://openalex.org/W2130184048","https://openalex.org/W2130293653","https://openalex.org/W2131024476","https://openalex.org/W2132106992","https://openalex.org/W2136235822","https://openalex.org/W2140856955","https://openalex.org/W2142440644","https://openalex.org/W2145768101","https://openalex.org/W2153663612","https://openalex.org/W2156661350","https://openalex.org/W2156929702","https://openalex.org/W2159766410","https://openalex.org/W2169183970","https://openalex.org/W2172128189","https://openalex.org/W2172275395","https://openalex.org/W2536599074","https://openalex.org/W2567948266","https://openalex.org/W4248936881"],"related_works":["https://openalex.org/W3130349901","https://openalex.org/W2990323019","https://openalex.org/W2143508933","https://openalex.org/W2095350775","https://openalex.org/W2064347530","https://openalex.org/W2014494654","https://openalex.org/W1992295166","https://openalex.org/W1975321310","https://openalex.org/W1952261593","https://openalex.org/W1579833936"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"address":[4],"the":[5,32,35,80,90,100,106,146,155,166],"problem":[6],"of":[7,37,59,82,118,142,157],"recovering":[8],"degraded":[9],"images":[10],"using":[11],"multivariate":[12,47,102],"Gaussian":[13,48,84,103,148],"mixture":[14],"model":[15,110],"(GMM)":[16],"as":[17],"a":[18,41,46,52,87,112],"prior.":[19],"The":[20,150],"GMM":[21,63],"framework":[22],"in":[23,40,72,79,154],"our":[24,160,170],"method":[25,161,173],"for":[26,124,128],"image":[27,60,129,158,171],"restoration":[28,61],"is":[29,134,137,162],"based":[30,138],"on":[31,139],"assumption":[33],"that":[34,78,153],"accumulation":[36],"similar":[38],"patches":[39,71,133],"neighborhood":[42],"are":[43,93],"derived":[44,98],"from":[45,99,131],"probability":[49],"distribution":[50],"with":[51,62,165],"specific":[53],"covariance":[54],"and":[55,169],"mean.":[56],"Previous":[57],"methods":[58],"have":[64],"not":[65],"considered":[66],"spatial":[67],"(geometric)":[68],"distance":[69],"between":[70],"clustering.":[73],"Our":[74],"conducted":[75],"experiments":[76],"show":[77],"case":[81,156],"constraining":[83],"estimates":[85],"into":[86],"finite-sized":[88],"windows,":[89],"patch":[91,144],"clusters":[92],"more":[94],"likely":[95],"to":[96,115,145],"be":[97],"estimated":[101,147],"distributions,":[104],"i.e.,":[105],"proposed":[107],"statistical":[108,116],"patch-based":[109],"provides":[111],"better":[113],"goodness-of-fit":[114],"properties":[117],"natural":[119],"images.":[120],"A":[121],"novel":[122],"approach":[123],"computing":[125],"aggregation":[126],"weights":[127],"reconstruction":[130],"recovered":[132],"introduced":[135],"which":[136],"similarity":[140],"degree":[141],"each":[143],"clusters.":[149],"results":[151],"admit":[152],"denoising,":[159],"highly":[163],"comparable":[164],"state-of-the-art":[167,176],"methods,":[168],"interpolation":[172],"outperforms":[174],"previous":[175],"methods.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1607704809","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":14},{"year":2018,"cited_by_count":13},{"year":2017,"cited_by_count":18},{"year":2016,"cited_by_count":7},{"year":2015,"cited_by_count":1}],"updated_date":"2024-11-27T05:24:38.576137","created_date":"2016-06-24"}