iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/TIM.2021.3054415
{"id":"https://openalex.org/W3127479494","doi":"https://doi.org/10.1109/tim.2021.3054415","title":"RCAG-Net: Residual Channelwise Attention Gate Network for Hot Spot Defect Detection of Photovoltaic Farms","display_name":"RCAG-Net: Residual Channelwise Attention Gate Network for Hot Spot Defect Detection of Photovoltaic Farms","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3127479494","doi":"https://doi.org/10.1109/tim.2021.3054415","mag":"3127479494"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2021.3054415","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5107970702","display_name":"Binyi Su","orcid":"https://orcid.org/0000-0002-9234-2002"},"institutions":[{"id":"https://openalex.org/I184843921","display_name":"Hebei University of Technology","ror":"https://ror.org/018hded08","country_code":"CN","type":"education","lineage":["https://openalex.org/I184843921"]},{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Binyi Su","raw_affiliation_strings":["School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China","School of Computing, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China","institution_ids":["https://openalex.org/I184843921"]},{"raw_affiliation_string":"School of Computing, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076611575","display_name":"Haiyong Chen","orcid":"https://orcid.org/0000-0002-5262-4208"},"institutions":[{"id":"https://openalex.org/I184843921","display_name":"Hebei University of Technology","ror":"https://ror.org/018hded08","country_code":"CN","type":"education","lineage":["https://openalex.org/I184843921"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiyong Chen","raw_affiliation_strings":["School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China","institution_ids":["https://openalex.org/I184843921"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100398796","display_name":"Kun Liu","orcid":"https://orcid.org/0000-0003-0774-3635"},"institutions":[{"id":"https://openalex.org/I184843921","display_name":"Hebei University of Technology","ror":"https://ror.org/018hded08","country_code":"CN","type":"education","lineage":["https://openalex.org/I184843921"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kun Liu","raw_affiliation_strings":["School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China","institution_ids":["https://openalex.org/I184843921"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100768751","display_name":"Weipeng Liu","orcid":"https://orcid.org/0000-0001-6366-3352"},"institutions":[{"id":"https://openalex.org/I184843921","display_name":"Hebei University of Technology","ror":"https://ror.org/018hded08","country_code":"CN","type":"education","lineage":["https://openalex.org/I184843921"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weipeng Liu","raw_affiliation_strings":["School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence & Data Science, Hebei University of Technology, Tianjin, China","institution_ids":["https://openalex.org/I184843921"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.307,"has_fulltext":false,"cited_by_count":49,"citation_normalized_percentile":{"value":0.999929,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"70","issue":null,"first_page":"1","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10468","display_name":"Photovoltaic Maximum Power Point Tracking Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10468","display_name":"Photovoltaic Maximum Power Point Tracking Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Fabric Defect Detection in Industrial Applications","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12838","display_name":"Environmental Impacts of Solar Energy Technologies","score":0.9903,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6900308},{"id":"https://openalex.org/keywords/fabric-defect-detection","display_name":"Fabric Defect Detection","score":0.543936},{"id":"https://openalex.org/keywords/surface-defect-detection","display_name":"Surface Defect Detection","score":0.537438}],"concepts":[{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.71403444},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6900308},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6082748},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5694681},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54214656},{"id":"https://openalex.org/C41291067","wikidata":"https://www.wikidata.org/wiki/Q1897785","display_name":"Photovoltaic system","level":2,"score":0.54131603},{"id":"https://openalex.org/C199672914","wikidata":"https://www.wikidata.org/wiki/Q4241353","display_name":"Hot spot (computer programming)","level":2,"score":0.52839226},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.46537253},{"id":"https://openalex.org/C34146451","wikidata":"https://www.wikidata.org/wiki/Q5048094","display_name":"Cascade","level":2,"score":0.4594918},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4233812},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.25008038},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24102852},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C42360764","wikidata":"https://www.wikidata.org/wiki/Q83588","display_name":"Chemical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2021.3054415","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.41}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61872023"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61873315"},{"funder":"https://openalex.org/F4320322163","funder_display_name":"Natural Science Foundation of Hebei Province","award_id":"F2018202078"},{"funder":"https://openalex.org/F4320322163","funder_display_name":"Natural Science Foundation of Hebei Province","award_id":"F2019202305"}],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1609485075","https://openalex.org/W1686810756","https://openalex.org/W1861492603","https://openalex.org/W2062118960","https://openalex.org/W2092072518","https://openalex.org/W2161969291","https://openalex.org/W2162619157","https://openalex.org/W2163352848","https://openalex.org/W2182391814","https://openalex.org/W2612445135","https://openalex.org/W2616219098","https://openalex.org/W2752782242","https://openalex.org/W2796347433","https://openalex.org/W2825063406","https://openalex.org/W2884561390","https://openalex.org/W2888358068","https://openalex.org/W2895777600","https://openalex.org/W2905203854","https://openalex.org/W2914254566","https://openalex.org/W2925274914","https://openalex.org/W2955058313","https://openalex.org/W2962835968","https://openalex.org/W2963091558","https://openalex.org/W2963150697","https://openalex.org/W2963346150","https://openalex.org/W2963420686","https://openalex.org/W2965293753","https://openalex.org/W2982527808","https://openalex.org/W2994615081","https://openalex.org/W3004904391","https://openalex.org/W302480169","https://openalex.org/W3034971973","https://openalex.org/W3040739812","https://openalex.org/W3103461182","https://openalex.org/W3106250896","https://openalex.org/W4293584584","https://openalex.org/W4297775537","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W64588465","https://openalex.org/W3134067061","https://openalex.org/W3120641340","https://openalex.org/W2153719181","https://openalex.org/W2117825986","https://openalex.org/W2079855347","https://openalex.org/W2060986072","https://openalex.org/W2052574922","https://openalex.org/W1971748923","https://openalex.org/W1566155057"],"abstract_inverted_index":{"The":[0],"small":[1,171],"hot":[2,172],"spot":[3,173],"defect":[4,53,159],"detection":[5,160,174],"for":[6,99,170],"photovoltaic":[7],"(PV)":[8],"farms":[9],"is":[10,36,154],"a":[11,28,40,157],"challenging":[12,26],"problem":[13],"due":[14],"to":[15,44,85,117,129],"the":[16,20,58,68,91,111,126,130,134,137,151,163],"feature":[17,47,54,64,101,120],"vanishing":[18],"as":[19],"network":[21,34,114],"deepens.":[22],"To":[23],"solve":[24],"this":[25],"problem,":[27],"novel":[29,41,59],"residual":[30,123],"channelwise":[31,100],"attention":[32,97],"gate":[33,104],"(RCAG-Net)":[35],"proposed":[37,152],"by":[38,66,103],"employing":[39],"RCAG":[42,60,139],"module":[43,61],"achieve":[45,118],"multiscale":[46],"fusion,":[48],"complex":[49],"background":[50],"suppression,":[51],"and":[52,79,88,162],"highlighting.":[55],"In":[56],"RCAG-Net,":[57],"first":[62],"realizes":[63],"fusion":[65],"adding":[67],"features":[69,116,128],"of":[70,90,110,136,175],"different":[71],"scale":[72],"layers.":[73],"Next,":[74],"global":[75],"average":[76],"pooling":[77],"(GAP)":[78],"multilayer":[80],"perceptron":[81],"(MLP)":[82],"are":[83],"used":[84],"dimension":[86],"reduction":[87],"refinement":[89],"fused":[92,127],"features,":[93],"then":[94],"yielding":[95],"an":[96],"map":[98],"reweighting":[102],"mechanism,":[105],"which":[106],"employs":[107],"selective":[108],"transmission":[109],"convolution":[112],"neural":[113],"(CNN)-extracted":[115],"informative":[119],"filtering.":[121],"Moreover,":[122],"connection":[124],"from":[125],"final":[131],"output":[132],"facilitates":[133],"insertion":[135],"new":[138],"into":[140],"some":[141],"classical":[142],"pretrained":[143],"models,":[144],"without":[145],"breaking":[146],"its":[147,168],"initial":[148],"behavior.":[149],"Finally,":[150],"approach":[153],"validated":[155],"through":[156],"real":[158],"system,":[161],"experimental":[164],"result":[165],"clearly":[166],"verifies":[167],"effectiveness":[169],"PV":[176],"farms.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3127479494","counts_by_year":[{"year":2024,"cited_by_count":13},{"year":2023,"cited_by_count":17},{"year":2022,"cited_by_count":13},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-03T18:48:56.687611","created_date":"2021-02-15"}