iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/TIFS.2023.3269640
{"id":"https://openalex.org/W4366957336","doi":"https://doi.org/10.1109/tifs.2023.3269640","title":"Separable Convolution Network With Dual-Stream Pyramid Enhanced Strategy for Speech Steganalysis","display_name":"Separable Convolution Network With Dual-Stream Pyramid Enhanced Strategy for Speech Steganalysis","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4366957336","doi":"https://doi.org/10.1109/tifs.2023.3269640"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tifs.2023.3269640","pdf_url":null,"source":{"id":"https://openalex.org/S61310614","display_name":"IEEE Transactions on Information Forensics and Security","issn_l":"1556-6013","issn":["1556-6013","1556-6021"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069290969","display_name":"Yiqin Qiu","orcid":"https://orcid.org/0000-0001-6653-1734"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]},{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yiqin Qiu","raw_affiliation_strings":["College of Computer Science and Technology, National Huaqiao University, Xiamen, China","Xiamen Key Laboratory of Data Security and Blockchain Technology, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Xiamen Key Laboratory of Data Security and Blockchain Technology, Xiamen, China","institution_ids":["https://openalex.org/I75867142"]},{"raw_affiliation_string":"College of Computer Science and Technology, National Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100681240","display_name":"Hui Tian","orcid":"https://orcid.org/0000-0002-1591-656X"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]},{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Tian","raw_affiliation_strings":["College of Computer Science and Technology, National Huaqiao University, Xiamen, China","Xiamen Key Laboratory of Data Security and Blockchain Technology, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Xiamen Key Laboratory of Data Security and Blockchain Technology, Xiamen, China","institution_ids":["https://openalex.org/I75867142"]},{"raw_affiliation_string":"College of Computer Science and Technology, National Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032690182","display_name":"Haizhou Li","orcid":"https://orcid.org/0000-0001-9158-9401"},"institutions":[{"id":"https://openalex.org/I165932596","display_name":"National University of Singapore","ror":"https://ror.org/01tgyzw49","country_code":"SG","type":"education","lineage":["https://openalex.org/I165932596"]},{"id":"https://openalex.org/I4210116924","display_name":"Chinese University of Hong Kong, Shenzhen","ror":"https://ror.org/02d5ks197","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633","https://openalex.org/I180726961","https://openalex.org/I4210116924"]},{"id":"https://openalex.org/I4210099586","display_name":"Shenzhen Research Institute of Big Data","ror":"https://ror.org/00z1gwf89","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210099586"]}],"countries":["CN","SG"],"is_corresponding":false,"raw_author_name":"Haizhou Li","raw_affiliation_strings":["Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore","School of Data Science, Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore","institution_ids":["https://openalex.org/I165932596"]},{"raw_affiliation_string":"School of Data Science, Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China","institution_ids":["https://openalex.org/I4210116924","https://openalex.org/I4210099586"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038550838","display_name":"Chin\u2010Chen Chang","orcid":"https://orcid.org/0000-0002-7319-5780"},"institutions":[{"id":"https://openalex.org/I4880106","display_name":"Feng Chia University","ror":"https://ror.org/05vhczg54","country_code":"TW","type":"education","lineage":["https://openalex.org/I4880106"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chin-Chen Chang","raw_affiliation_strings":["Department of Information and Computer Science, Feng Chia University, Taichung, Taiwan"],"affiliations":[{"raw_affiliation_string":"Department of Information and Computer Science, Feng Chia University, Taichung, Taiwan","institution_ids":["https://openalex.org/I4880106"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074022699","display_name":"Athanasios V. Vasilakos","orcid":"https://orcid.org/0000-0003-1902-9877"},"institutions":[{"id":"https://openalex.org/I200650556","display_name":"University of Agder","ror":"https://ror.org/03x297z98","country_code":"NO","type":"education","lineage":["https://openalex.org/I200650556"]}],"countries":["NO"],"is_corresponding":false,"raw_author_name":"Athanasios V. Vasilakos","raw_affiliation_strings":["Center for AI Research, University of Agder, Grimstad, Norway"],"affiliations":[{"raw_affiliation_string":"Center for AI Research, University of Agder, Grimstad, Norway","institution_ids":["https://openalex.org/I200650556"]}]}],"institution_assertions":[],"countries_distinct_count":4,"institutions_distinct_count":7,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.459,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.999961,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":92},"biblio":{"volume":"18","issue":null,"first_page":"2737","last_page":"2750"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10388","display_name":"Digital Image Watermarking Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10388","display_name":"Digital Image Watermarking Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Image Forgery Detection and Identification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10601","display_name":"Handwriting Recognition and Text Detection","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/steganalysis","display_name":"Steganalysis","score":0.65644985},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.5403289},{"id":"https://openalex.org/keywords/resampling-detection","display_name":"Resampling Detection","score":0.520695},{"id":"https://openalex.org/keywords/steganography","display_name":"Steganography","score":0.517674},{"id":"https://openalex.org/keywords/splicing-detection","display_name":"Splicing Detection","score":0.504261},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.46983287},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.41145587}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85413414},{"id":"https://openalex.org/C107368093","wikidata":"https://www.wikidata.org/wiki/Q448176","display_name":"Steganalysis","level":4,"score":0.65644985},{"id":"https://openalex.org/C127759330","wikidata":"https://www.wikidata.org/wiki/Q637416","display_name":"Codebook","level":2,"score":0.605132},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.5403289},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5339388},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52537286},{"id":"https://openalex.org/C108801101","wikidata":"https://www.wikidata.org/wiki/Q15032","display_name":"Steganography","level":3,"score":0.48879835},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.46983287},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.4506951},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.42084178},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.41145587},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4095466},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.39335203},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34435993},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12175855},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tifs.2023.3269640","pdf_url":null,"source":{"id":"https://openalex.org/S61310614","display_name":"IEEE Transactions on Information Forensics and Security","issn_l":"1556-6013","issn":["1556-6013","1556-6021"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.71,"id":"https://metadata.un.org/sdg/10"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61972168"}],"datasets":[],"versions":[],"referenced_works_count":63,"referenced_works":["https://openalex.org/W1503293663","https://openalex.org/W1564410763","https://openalex.org/W164331984","https://openalex.org/W1677182931","https://openalex.org/W1993490956","https://openalex.org/W1995716398","https://openalex.org/W2015247917","https://openalex.org/W2020463003","https://openalex.org/W2026170051","https://openalex.org/W2031201693","https://openalex.org/W2062274245","https://openalex.org/W2081326826","https://openalex.org/W2082241271","https://openalex.org/W2088023168","https://openalex.org/W2095705004","https://openalex.org/W2115544090","https://openalex.org/W2127531897","https://openalex.org/W2139208951","https://openalex.org/W2145370087","https://openalex.org/W2156822024","https://openalex.org/W2187089797","https://openalex.org/W2194775991","https://openalex.org/W2256709644","https://openalex.org/W2531409750","https://openalex.org/W2541211032","https://openalex.org/W2557199391","https://openalex.org/W2560351977","https://openalex.org/W2582104044","https://openalex.org/W2613904329","https://openalex.org/W2736227332","https://openalex.org/W2758703394","https://openalex.org/W2761700536","https://openalex.org/W2789133688","https://openalex.org/W2789773147","https://openalex.org/W2794624153","https://openalex.org/W2884585870","https://openalex.org/W2891319403","https://openalex.org/W2899663614","https://openalex.org/W2900394486","https://openalex.org/W2901969865","https://openalex.org/W2908510526","https://openalex.org/W2912119169","https://openalex.org/W2921736567","https://openalex.org/W2959795245","https://openalex.org/W2962333546","https://openalex.org/W2962587763","https://openalex.org/W2962858109","https://openalex.org/W2963125010","https://openalex.org/W2963420686","https://openalex.org/W2963794428","https://openalex.org/W2969585684","https://openalex.org/W2975166495","https://openalex.org/W2979690817","https://openalex.org/W3013698467","https://openalex.org/W3023960903","https://openalex.org/W3095359447","https://openalex.org/W3128298146","https://openalex.org/W3169527909","https://openalex.org/W3214106073","https://openalex.org/W4200080082","https://openalex.org/W4206580415","https://openalex.org/W4297775537","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4309385482","https://openalex.org/W4243922849","https://openalex.org/W3154843532","https://openalex.org/W2939392096","https://openalex.org/W2792878404","https://openalex.org/W2182496537","https://openalex.org/W2148973528","https://openalex.org/W2106726851","https://openalex.org/W2068740952","https://openalex.org/W1583147569"],"abstract_inverted_index":{"Steganography":[0],"based":[1,39],"on":[2,40,234],"fixed":[3],"codebook":[4],"has":[5],"become":[6],"one":[7],"of":[8,13,71,117,146,161,171,183,215],"the":[9,23,59,65,75,89,93,114,129,135,144,166,172,181,184,191,196,213,216],"most":[10],"important":[11],"branches":[12,142],"speech":[14,139,222],"steganography":[15],"due":[16],"to":[17,52,63,81,99,112,123,151,156,203],"its":[18,29],"high":[19],"imperceptibility":[20],"and":[21,137,178],"having":[22],"largest":[24],"available":[25,233],"carrier":[26],"space.":[27],"As":[28],"countermeasure":[30],"technique,":[31],"this":[32,228],"paper":[33],"presents":[34],"a":[35,205],"novel":[36],"steganalysis":[37],"method":[38,174,193],"separable":[41,61],"convolution":[42],"network":[43,220],"(SepSteNet)":[44],"with":[45,153,180],"dual-stream":[46,132],"pyramid":[47],"enhanced":[48],"strategy":[49,208],"(DPES).":[50],"Specifically,":[51],"better":[53],"acquire":[54],"discriminative":[55],"representations,":[56],"we":[57],"design":[58],"pulse-aware":[60,76],"block":[62,96],"capture":[64],"pulse":[66,72],"correspondence":[67,101,145],"along":[68],"independent":[69,160],"levels":[70],"positions,":[73],"where":[74],"excitation":[77],"module":[78],"is":[79,97,121,175,201],"plugged":[80],"avoid":[82],"noisy":[83],"clue":[84],"accumulation":[85],"by":[86,128],"adaptively":[87],"emphasizing":[88],"salient":[90],"part.":[91],"Moreover,":[92],"global":[94,105],"attending":[95],"introduced":[98],"enhance":[100],"features":[102,127,159],"through":[103],"calculating":[104],"responses":[106],"at":[107],"distinct":[108],"subframes.":[109],"In":[110],"addition,":[111],"eliminate":[113],"negative":[115],"impact":[116],"sample":[118,162],"content,":[119,163],"DPES":[120,200],"leveraged":[122],"incorporate":[124],"cross-domain":[125],"coherence":[126,158],"inverted":[130],"connected":[131],"branches.":[133],"With":[134],"original":[136],"calibration":[138],"samples,":[140],"two":[141,147],"enable":[143],"detection":[148,167],"feature":[149],"domains":[150],"interact":[152],"each":[154],"other":[155],"generate":[157],"thereby":[164],"improving":[165],"performance.":[168],"The":[169,186,224],"performance":[170,214],"presented":[173,192],"comprehensively":[176],"evaluated":[177],"compared":[179],"state":[182],"arts.":[185],"experimental":[187],"results":[188],"demonstrate":[189],"that":[190,209],"significantly":[194],"outperforms":[195],"existing":[197,217],"ones.":[198],"Furthermore,":[199],"shown":[202],"be":[204,231],"general":[206],"enhancement":[207],"can":[210],"effectively":[211],"improve":[212],"deep":[218],"neural":[219],"for":[221,227],"steganalysis.":[223],"source":[225],"code":[226],"work":[229],"will":[230],"publicly":[232],"GitHub.":[235]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366957336","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3}],"updated_date":"2024-11-04T22:08:28.175097","created_date":"2023-04-26"}