{"id":"https://openalex.org/W4285146458","doi":"https://doi.org/10.1109/tc.2022.3179226","title":"OpenHD: A GPU-Powered Framework for Hyperdimensional Computing","display_name":"OpenHD: A GPU-Powered Framework for Hyperdimensional Computing","publication_year":2022,"publication_date":"2022-05-31","ids":{"openalex":"https://openalex.org/W4285146458","doi":"https://doi.org/10.1109/tc.2022.3179226"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/tc.2022.3179226","pdf_url":null,"source":{"id":"https://openalex.org/S157670870","display_name":"IEEE Transactions on Computers","issn_l":"0018-9340","issn":["0018-9340","1557-9956","2326-3814"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1109/tc.2022.3179226","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072579616","display_name":"Jaeyoung Kang","orcid":"https://orcid.org/0000-0003-1048-1285"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jaeyoung Kang","raw_affiliation_strings":["University of California San Diego, La Jolla, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California San Diego, La Jolla, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060490428","display_name":"Behnam Khaleghi","orcid":"https://orcid.org/0000-0002-3655-0501"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Behnam Khaleghi","raw_affiliation_strings":["University of California San Diego, La Jolla, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California San Diego, La Jolla, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112841571","display_name":"Tajana Rosing","orcid":null},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tajana Rosing","raw_affiliation_strings":["University of California San Diego, La Jolla, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California San Diego, La Jolla, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067380102","display_name":"Yeseong Kim","orcid":"https://orcid.org/0000-0001-5947-9632"},"institutions":[{"id":"https://openalex.org/I193352282","display_name":"Daegu Gyeongbuk Institute of Science and Technology","ror":"https://ror.org/03frjya69","country_code":"KR","type":"education","lineage":["https://openalex.org/I193352282"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yeseong Kim","raw_affiliation_strings":["Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea","institution_ids":["https://openalex.org/I193352282"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.854,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.663211,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"71","issue":"11","first_page":"2753","last_page":"2765"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12046","display_name":"Two-Dimensional Transition Metal Carbides and Nitrides (MXenes)","score":0.9731,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperdimensional-computing","display_name":"Hyperdimensional Computing","score":0.613656},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.528623},{"id":"https://openalex.org/keywords/brain-inspired-computing","display_name":"Brain-inspired Computing","score":0.50852},{"id":"https://openalex.org/keywords/implementation","display_name":"Implementation","score":0.4379627}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8490369},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6875577},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.63874835},{"id":"https://openalex.org/C2781172179","wikidata":"https://www.wikidata.org/wiki/Q853109","display_name":"Parallelism (grammar)","level":2,"score":0.50520927},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.4888179},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.47319552},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4600366},{"id":"https://openalex.org/C26713055","wikidata":"https://www.wikidata.org/wiki/Q245962","display_name":"Implementation","level":2,"score":0.4379627},{"id":"https://openalex.org/C83283714","wikidata":"https://www.wikidata.org/wiki/Q121117","display_name":"Supercomputer","level":2,"score":0.41202572},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.36511663},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35655212},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.33882084},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.13649875},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.12752035},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/tc.2022.3179226","pdf_url":null,"source":{"id":"https://openalex.org/S157670870","display_name":"IEEE Transactions on Computers","issn_l":"0018-9340","issn":["0018-9340","1557-9956","2326-3814"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/tc.2022.3179226","pdf_url":null,"source":{"id":"https://openalex.org/S157670870","display_name":"IEEE Transactions on Computers","issn_l":"0018-9340","issn":["0018-9340","1557-9956","2326-3814"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"NRF-2018R1A5A1060031"},{"funder":"https://openalex.org/F4320332180","funder_display_name":"Defense Advanced Research Projects Agency","award_id":null},{"funder":"https://openalex.org/F4320335353","funder_display_name":"National Science Foundation of Sri Lanka","award_id":"2003279"},{"funder":"https://openalex.org/F4320335353","funder_display_name":"National Science Foundation of Sri Lanka","award_id":"2100237"},{"funder":"https://openalex.org/F4320335353","funder_display_name":"National Science Foundation of Sri Lanka","award_id":"2120019"},{"funder":"https://openalex.org/F4320335353","funder_display_name":"National Science Foundation of Sri Lanka","award_id":"1911095"}],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1573706465","https://openalex.org/W1601950028","https://openalex.org/W1782174992","https://openalex.org/W1985462363","https://openalex.org/W2026297770","https://openalex.org/W2070862086","https://openalex.org/W2078794610","https://openalex.org/W2245493112","https://openalex.org/W2254523767","https://openalex.org/W2476008461","https://openalex.org/W2583857261","https://openalex.org/W2613567208","https://openalex.org/W2624514417","https://openalex.org/W2771100829","https://openalex.org/W2796260258","https://openalex.org/W2897044384","https://openalex.org/W2900379535","https://openalex.org/W2915418849","https://openalex.org/W2945276917","https://openalex.org/W2946432794","https://openalex.org/W2946512196","https://openalex.org/W2963782760","https://openalex.org/W2964024268","https://openalex.org/W2967927776","https://openalex.org/W2971739303","https://openalex.org/W2993412634","https://openalex.org/W2996807164","https://openalex.org/W3004130044","https://openalex.org/W3032819016","https://openalex.org/W3036478084","https://openalex.org/W3082536176","https://openalex.org/W3103415979","https://openalex.org/W3120740533","https://openalex.org/W3215653427","https://openalex.org/W4212879565","https://openalex.org/W4297799865"],"related_works":["https://openalex.org/W4400094300","https://openalex.org/W3214280620","https://openalex.org/W3191490922","https://openalex.org/W2794038527","https://openalex.org/W2765823764","https://openalex.org/W2384867379","https://openalex.org/W2329539859","https://openalex.org/W2327638088","https://openalex.org/W2227905990","https://openalex.org/W2151092287"],"abstract_inverted_index":{"Hyperdimensional":[0],"computing":[1],"(HDC)":[2],"has":[3],"emerged":[4],"as":[5],"an":[6],"alternative":[7],"lightweight":[8],"learning":[9],"solution":[10],"to":[11,48,80,96,111,151,168],"deep":[12],"neural":[13],"networks.":[14],"A":[15],"key":[16],"characteristic":[17],"of":[18,24,35,51,72,85],"HDC":[19,36,53,74,116,144,155,188],"is":[20,166,189,198],"the":[21,49,70,93,123,128,132,152],"great":[22],"extent":[23],"parallelism":[25,114],"that":[26,122,164],"can":[27,141],"facilitate":[28],"hardware":[29,33],"acceleration.":[30],"However,":[31],"previous":[32],"implementations":[34],"seldom":[37],"focus":[38],"on":[39,54,159,185],"GPU":[40],"designs,":[41],"which":[42],"were":[43],"also":[44,105],"inefficient":[45],"partly":[46],"due":[47],"complexity":[50],"accelerating":[52],"GPUs.":[55,81],"In":[56],"this":[57],"paper,":[58],"we":[59],"present":[60],"OpenHD,":[61,139],"a":[62,107],"flexible":[63],"and":[64,78,100,170,176,183,191],"high-performance":[65],"GPU-powered":[66,154],"framework":[67],"for":[68,90,173],"automating":[69],"mapping":[71],"general":[73],"applications":[75,145],"including":[76],"classification":[77,175,182],"clustering":[79,184],"OpenHD":[82,165,197],"takes":[83],"advantage":[84],"memory":[86,98],"optimization":[87],"strategies":[88],"specialized":[89],"HDC,":[91],"minimizing":[92],"access":[94],"time":[95],"different":[97],"subsystems,":[99],"removing":[101],"redundant":[102],"operations.":[103],"We":[104],"propose":[106],"novel":[108],"training":[109,125,134],"method":[110],"enable":[112],"data":[113],"in":[115],"training.":[117],"Our":[118],"evaluation":[119,158],"result":[120],"shows":[121,163],"proposed":[124],"rapidly":[126],"achieves":[127],"target":[129],"accuracy,":[130],"reducing":[131],"required":[133],"epochs":[135],"by":[136],"4\u00d7.":[137],"With":[138],"users":[140],"deploy":[142],"GPU-accelerated":[143],"without":[146],"domain":[147],"expert":[148],"knowledge.":[149],"Compared":[150,179],"state-of-the-art":[153],"implementation,":[156],"our":[157],"NVIDIA":[160],"Jetson":[161],"TX2":[162],"up":[167],"10.5\u00d7":[169],"314\u00d7":[171],"faster":[172,193],"HDC-based":[174],"clustering,":[177],"respectively.":[178],"with":[180],"non-HDC":[181],"GPUs,":[186],"OpenHD-based":[187],"11.7\u00d7":[190],"53\u00d7":[192],"at":[194],"comparable":[195],"accuracy.":[196],"available":[199],"at:":[200],"