{"id":"https://openalex.org/W2129846042","doi":"https://doi.org/10.1109/taslp.2015.2438535","title":"Speech Emotion Verification Using Emotion Variance Modeling and Discriminant Scale-Frequency Maps","display_name":"Speech Emotion Verification Using Emotion Variance Modeling and Discriminant Scale-Frequency Maps","publication_year":2015,"publication_date":"2015-06-03","ids":{"openalex":"https://openalex.org/W2129846042","doi":"https://doi.org/10.1109/taslp.2015.2438535","mag":"2129846042"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taslp.2015.2438535","pdf_url":null,"source":{"id":"https://openalex.org/S4210169297","display_name":"IEEE/ACM Transactions on Audio Speech and Language Processing","issn_l":"2329-9290","issn":["2329-9290","2329-9304"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029325015","display_name":"Jia\u2010Ching Wang","orcid":"https://orcid.org/0000-0003-0024-6732"},"institutions":[{"id":"https://openalex.org/I22265921","display_name":"National Central University","ror":"https://ror.org/00944ve71","country_code":"TW","type":"education","lineage":["https://openalex.org/I22265921"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Jia-Ching Wang","raw_affiliation_strings":["[National Central University, Taoyuan, TAIWAN]"],"affiliations":[{"raw_affiliation_string":"[National Central University, Taoyuan, TAIWAN]","institution_ids":["https://openalex.org/I22265921"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078481250","display_name":"Yu\u2010Hao Chin","orcid":null},"institutions":[{"id":"https://openalex.org/I22265921","display_name":"National Central University","ror":"https://ror.org/00944ve71","country_code":"TW","type":"education","lineage":["https://openalex.org/I22265921"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Yu-Hao Chin","raw_affiliation_strings":["[National Central University, Taoyuan, TAIWAN]"],"affiliations":[{"raw_affiliation_string":"[National Central University, Taoyuan, TAIWAN]","institution_ids":["https://openalex.org/I22265921"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100679032","display_name":"Bo\u2010Wei Chen","orcid":"https://orcid.org/0000-0001-6526-9017"},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"education","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bo-Wei Chen","raw_affiliation_strings":["Princeton Univ., Princeton , NJ"],"affiliations":[{"raw_affiliation_string":"Princeton Univ., Princeton , NJ","institution_ids":["https://openalex.org/I20089843"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110204872","display_name":"Chang-Hong Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I4210148468","display_name":"Industrial Technology Research Institute","ror":"https://ror.org/05szzwt63","country_code":"TW","type":"nonprofit","lineage":["https://openalex.org/I4210148468"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chang-Hong Lin","raw_affiliation_strings":["Industrial Technology Research Institute, Hsinchu, Taiwan"],"affiliations":[{"raw_affiliation_string":"Industrial Technology Research Institute, Hsinchu, Taiwan","institution_ids":["https://openalex.org/I4210148468"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103251327","display_name":"Chung\u2010Hsien Wu","orcid":"https://orcid.org/0000-0002-3947-2123"},"institutions":[{"id":"https://openalex.org/I91807558","display_name":"National Cheng Kung University","ror":"https://ror.org/01b8kcc49","country_code":"TW","type":"education","lineage":["https://openalex.org/I91807558"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chung-Hsien Wu","raw_affiliation_strings":["National Cheng Kung University, Tainan, Taiwan"],"affiliations":[{"raw_affiliation_string":"National Cheng Kung University, Tainan, Taiwan","institution_ids":["https://openalex.org/I91807558"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.124,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.894179,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"23","issue":"10","first_page":"1552","last_page":"1562"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech Enhancement Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech Enhancement Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.611905},{"id":"https://openalex.org/keywords/speech-emotion","display_name":"Speech Emotion","score":0.592079},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.5888069},{"id":"https://openalex.org/keywords/affective-computing","display_name":"Affective Computing","score":0.582587},{"id":"https://openalex.org/keywords/audio-visual-speech-recognition","display_name":"Audio-Visual Speech Recognition","score":0.562122},{"id":"https://openalex.org/keywords/speech-enhancement","display_name":"Speech Enhancement","score":0.508172},{"id":"https://openalex.org/keywords/mel-frequency-cepstrum","display_name":"Mel-frequency cepstrum","score":0.4198231}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68473196},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5888069},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5855694},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.5767005},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.54605645},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53016734},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.48954448},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.46181667},{"id":"https://openalex.org/C156872377","wikidata":"https://www.wikidata.org/wiki/Q6786281","display_name":"Matching pursuit","level":3,"score":0.46014392},{"id":"https://openalex.org/C78397625","wikidata":"https://www.wikidata.org/wiki/Q192487","display_name":"Discriminant","level":2,"score":0.45978123},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.45203722},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.44271204},{"id":"https://openalex.org/C151989614","wikidata":"https://www.wikidata.org/wiki/Q440370","display_name":"Mel-frequency cepstrum","level":3,"score":0.4198231},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.40099835},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24043325},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.11081529},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taslp.2015.2438535","pdf_url":null,"source":{"id":"https://openalex.org/S4210169297","display_name":"IEEE/ACM Transactions on Audio Speech and Language Processing","issn_l":"2329-9290","issn":["2329-9290","2329-9304"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.69,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":62,"referenced_works":["https://openalex.org/W1518369940","https://openalex.org/W1542637018","https://openalex.org/W1560013842","https://openalex.org/W1575712594","https://openalex.org/W1823409095","https://openalex.org/W185021866","https://openalex.org/W1940107713","https://openalex.org/W1973378890","https://openalex.org/W1976725440","https://openalex.org/W1977137834","https://openalex.org/W1977590548","https://openalex.org/W1978115892","https://openalex.org/W1981087263","https://openalex.org/W1986931325","https://openalex.org/W1998970979","https://openalex.org/W2013020033","https://openalex.org/W2032254851","https://openalex.org/W2043843997","https://openalex.org/W2053133047","https://openalex.org/W2057087916","https://openalex.org/W2066125712","https://openalex.org/W2071284784","https://openalex.org/W2094240301","https://openalex.org/W2097317162","https://openalex.org/W2099293127","https://openalex.org/W2099321050","https://openalex.org/W2099415951","https://openalex.org/W2102298245","https://openalex.org/W2102953093","https://openalex.org/W2108577177","https://openalex.org/W2110052520","https://openalex.org/W2111926505","https://openalex.org/W2113396990","https://openalex.org/W2118789253","https://openalex.org/W2120911927","https://openalex.org/W2121394390","https://openalex.org/W2121639850","https://openalex.org/W2129131372","https://openalex.org/W2129812935","https://openalex.org/W2130640900","https://openalex.org/W2132695272","https://openalex.org/W2146047955","https://openalex.org/W2150748440","https://openalex.org/W2151055832","https://openalex.org/W2151693816","https://openalex.org/W2154024118","https://openalex.org/W2154332973","https://openalex.org/W2159894238","https://openalex.org/W2161372178","https://openalex.org/W2163181067","https://openalex.org/W2164083354","https://openalex.org/W2167839759","https://openalex.org/W2168045655","https://openalex.org/W2172000360","https://openalex.org/W2394846910","https://openalex.org/W2615173510","https://openalex.org/W2747021345","https://openalex.org/W2757278639","https://openalex.org/W2778124742","https://openalex.org/W4245744384","https://openalex.org/W4246413347","https://openalex.org/W572723478"],"related_works":["https://openalex.org/W4297791310","https://openalex.org/W3147024994","https://openalex.org/W2374055396","https://openalex.org/W2362114017","https://openalex.org/W2350751952","https://openalex.org/W2063246903","https://openalex.org/W2021817983","https://openalex.org/W2011611369","https://openalex.org/W1999647744","https://openalex.org/W1978302214"],"abstract_inverted_index":{"This":[0],"paper":[1],"develops":[2],"an":[3,172,188],"approach":[4,115,185],"to":[5,61,82,89,123,164,211],"speech-based":[6],"emotion":[7,11,27,94,104,137],"verification":[8,114],"based":[9,116],"on":[10,117,171],"variance":[12,95,138],"modeling":[13],"and":[14,26,54,96,139,180,214],"discriminant":[15],"scale-frequency":[16,65,84],"maps.":[17],"The":[18,51,143],"proposed":[19,122,184,207],"system":[20],"consists":[21],"of":[22,56,74,175,194],"two":[23,106,160],"parts-feature":[24],"extraction":[25],"verification.":[28],"In":[29,100],"the":[30,40,47,57,72,91,101,125,129,150,156,166,183,206,212],"first":[31,126],"part,":[32,103],"for":[33],"each":[34],"sound":[35],"frame,":[36],"important":[37],"atoms":[38,58],"from":[39,128,155],"Gabor":[41],"dictionary":[42],"are":[43,59,108,162],"selected":[44],"by":[45,71,148],"using":[46,149],"matching":[48],"pursuit":[49],"algorithm.":[50],"scale,":[52],"frequency,":[53],"magnitude":[55],"extracted":[60],"construct":[62],"a":[63,133],"nonuniform":[64],"map,":[66],"which":[67],"supports":[68],"auditory":[69],"discriminability":[70],"analysis":[73],"critical":[75],"bands.":[76],"Next,":[77],"sparse":[78,87,112,130],"representation":[79,113],"is":[80,121,146,209],"used":[81],"transform":[83],"maps":[85],"into":[86],"coefficients":[88],"enhance":[90],"robustness":[92],"against":[93],"achieve":[97,187],"error-tolerance":[98],"improvement.":[99],"second":[102,144],"verification,":[105],"scores":[107,161],"calculated.":[109],"A":[110,199],"novel":[111],"Gaussian-modeled":[118],"residual":[119],"errors":[120],"generate":[124],"score":[127,145],"coefficients.":[131,158],"Such":[132],"classifier":[134],"can":[135,186],"minimize":[136],"improve":[140],"recognition":[141],"accuracy.":[142],"calculated":[147],"emotional":[151,173],"agreement":[152],"index":[153],"(EAI)":[154],"same":[157],"These":[159],"combined":[163],"obtain":[165],"final":[167],"detection":[168],"result.":[169],"Experiments":[170],"database":[174],"spoken":[176],"speech":[177],"were":[178],"conducted":[179],"indicate":[181],"that":[182,205],"average":[189],"equal":[190],"error":[191],"rate":[192],"(EER)":[193],"as":[195,197],"low":[196],"6.61%.":[198],"comparison":[200],"among":[201],"different":[202],"approaches":[203],"reveals":[204],"method":[208],"superior":[210],"others":[213],"confirms":[215],"its":[216],"feasibility.":[217]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2129846042","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":5}],"updated_date":"2024-11-20T01:23:09.042328","created_date":"2016-06-24"}