iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/SOCC58585.2023.10256738
{"id":"https://openalex.org/W4386952557","doi":"https://doi.org/10.1109/socc58585.2023.10256738","title":"Leveraging Mixed-Precision CNN Inference for Increased Robustness and Energy Efficiency","display_name":"Leveraging Mixed-Precision CNN Inference for Increased Robustness and Energy Efficiency","publication_year":2023,"publication_date":"2023-09-05","ids":{"openalex":"https://openalex.org/W4386952557","doi":"https://doi.org/10.1109/socc58585.2023.10256738"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/socc58585.2023.10256738","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091579417","display_name":"Tim Hotfilter","orcid":"https://orcid.org/0000-0001-9748-3149"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Tim Hotfilter","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021252999","display_name":"Julian Hoefer","orcid":"https://orcid.org/0000-0003-4904-0495"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Julian Hoefer","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069871511","display_name":"Philipp Merz","orcid":null},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Philipp Merz","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040618617","display_name":"Fabian Kre\u00df","orcid":"https://orcid.org/0000-0002-1700-5778"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Fabian Kre\u00df","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084249350","display_name":"Fabian Kempf","orcid":"https://orcid.org/0009-0008-6458-9383"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Fabian Kempf","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053259767","display_name":"Tanja Harbaum","orcid":"https://orcid.org/0000-0001-7310-567X"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Tanja Harbaum","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024739574","display_name":"J\u00fcrgen Becker","orcid":"https://orcid.org/0000-0002-5082-5487"},"institutions":[{"id":"https://openalex.org/I102335020","display_name":"Karlsruhe Institute of Technology","ror":"https://ror.org/04t3en479","country_code":"DE","type":"education","lineage":["https://openalex.org/I102335020","https://openalex.org/I1305996414"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"J\u00fcrgen Becker","raw_affiliation_strings":["Karlsruhe Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Karlsruhe Institute of Technology","institution_ids":["https://openalex.org/I102335020"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.274,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.556134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6265985}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8433809},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6582613},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6265985},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6121442},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50631964},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.43615317},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.43234774},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.4173754},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3350742},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33467078},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.27785784},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/socc58585.2023.10256738","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.71,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1999085092","https://openalex.org/W2593564159","https://openalex.org/W2776940252","https://openalex.org/W2810134417","https://openalex.org/W2895531329","https://openalex.org/W2927163560","https://openalex.org/W2940862705","https://openalex.org/W2954171777","https://openalex.org/W2964309882","https://openalex.org/W2985727781","https://openalex.org/W3095925033","https://openalex.org/W3105904398","https://openalex.org/W4206957512","https://openalex.org/W4247198796","https://openalex.org/W4288281368","https://openalex.org/W4308450151","https://openalex.org/W4313060082","https://openalex.org/W4378800858"],"related_works":["https://openalex.org/W4321487865","https://openalex.org/W4313906399","https://openalex.org/W4293226380","https://openalex.org/W4239306820","https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3183118997","https://openalex.org/W2917767146","https://openalex.org/W2055243143"],"abstract_inverted_index":{"Convolutional":[0],"Neural":[1],"Networks":[2],"(CNNs)":[3],"show":[4],"tremendous":[5],"performance":[6],"in":[7,192],"many":[8],"Computer":[9],"Vision":[10],"(CV)":[11],"tasks":[12],"like":[13,32],"image":[14,30,155],"segmentation":[15],"crucial":[16],"to":[17,29,44,84,96,134,175,186],"autonomous":[18],"driving.":[19],"However,":[20],"they":[21],"are":[22],"computationally":[23],"demanding":[24],"and":[25,67,113,132,173,189,217],"usually":[26],"not":[27,209],"robust":[28],"corruptions":[31],"weather":[33,75,107,168],"influences.":[34],"In":[35,71],"this":[36],"paper,":[37],"we":[38,50,77,100,121,181],"introduce":[39],"our":[40,123,159,206],"mixed-precision":[41,52,119],"inference":[42,82,216],"method":[43],"overcome":[45],"these":[46],"two":[47],"challenges.":[48],"Therefore,":[49,99],"enable":[51,118],"CNN":[53,215],"execution":[54],"on":[55,59,139],"modern":[56],"embedded":[57],"system":[58],"chips":[60],"(SoC)":[61],"that":[62,109,205],"feature":[63],"a":[64,68,74,147,151],"DNN":[65],"accelerator":[66],"reconfigurable":[69,141,224],"fabric.":[70,225],"case":[72],"of":[73,143,178,213,222],"change,":[76],"can":[78,182],"quickly":[79],"adjust":[80],"the":[81,135,140,144,176,198,211,214,223],"precision":[83],"maintain":[85],"model":[86,111,149,200],"accuracy,":[87],"while":[88,196],"benefitting":[89],"from":[90],"fewer":[91],"off-chip":[92,136,164],"memory":[93],"accesses":[94],"compared":[95],"full":[97],"precision.":[98],"identify":[101],"optimal":[102],"quantization":[103],"schemes":[104],"for":[105,128,154,157],"different":[106],"conditions":[108],"maximize":[110],"accuracy":[112],"minimize":[114],"data":[115,129,193],"offloading.":[116],"To":[117],"inference,":[120],"present":[122],"dynamic":[124],"number":[125],"conversion":[126],"architecture":[127,207],"going":[130],"back":[131],"forth":[133],"memory,":[137],"hosted":[138],"tile":[142],"SoC.":[145],"Using":[146],"DeepLabV3+":[148],"with":[150],"Resnet-101":[152],"backbone":[153],"segmentation,":[156],"example,":[158],"evaluation":[160],"yields":[161],"60%":[162],"less":[163],"movements":[165],"under":[166],"clear":[167],"conditions.":[169],"Applying":[170],"rain,":[171],"fog,":[172],"brightness":[174],"input":[177],"various":[179],"models,":[180],"report":[183],"an":[184],"up":[185],"26%,":[187],"23.8%":[188],"45%":[190],"reduction":[191],"transactions,":[194],"respectively,":[195],"maintaining":[197],"baseline":[199],"accuracy.":[201],"We":[202],"finally":[203],"demonstrate":[204],"does":[208],"impact":[210],"throughput":[212],"consumes":[218],"very":[219],"few":[220],"resources":[221]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386952557","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-09T05:31:17.358909","created_date":"2023-09-23"}