iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/SERA.2007.66
{"id":"https://openalex.org/W2103716941","doi":"https://doi.org/10.1109/sera.2007.66","title":"Comparative Analysis of Neural Network Techniques Vs Statistical Methods in Capacity Planning","display_name":"Comparative Analysis of Neural Network Techniques Vs Statistical Methods in Capacity Planning","publication_year":2007,"publication_date":"2007-08-01","ids":{"openalex":"https://openalex.org/W2103716941","doi":"https://doi.org/10.1109/sera.2007.66","mag":"2103716941"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sera.2007.66","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074324538","display_name":"Nalini Vasudevan","orcid":null},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nalini Vasudevan","raw_affiliation_strings":["Columbia University, New York"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111888326","display_name":"Gowri C. Parthasarathy","orcid":null},"institutions":[{"id":"https://openalex.org/I1324840837","display_name":"Hewlett-Packard (United States)","ror":"https://ror.org/059rn9488","country_code":"US","type":"company","lineage":["https://openalex.org/I1324840837"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gowri C. Parthasarathy","raw_affiliation_strings":["Hewlett Packard, India#TAB#"],"affiliations":[{"raw_affiliation_string":"Hewlett Packard, India#TAB#","institution_ids":["https://openalex.org/I1324840837"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.327339,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.8081,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.8081,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/capacity-planning","display_name":"Capacity planning","score":0.7355673},{"id":"https://openalex.org/keywords/feedforward-neural-networks","display_name":"Feedforward Neural Networks","score":0.450156},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.42465734},{"id":"https://openalex.org/keywords/resource-planning","display_name":"Resource planning","score":0.41400018}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7806568},{"id":"https://openalex.org/C2781007418","wikidata":"https://www.wikidata.org/wiki/Q1456934","display_name":"Capacity planning","level":2,"score":0.7355673},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.675394},{"id":"https://openalex.org/C22684755","wikidata":"https://www.wikidata.org/wiki/Q847526","display_name":"Queueing theory","level":2,"score":0.5981043},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.56038773},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.54924375},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5272654},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.5036046},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.45769224},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.42465734},{"id":"https://openalex.org/C2983117007","wikidata":"https://www.wikidata.org/wiki/Q7315831","display_name":"Resource planning","level":2,"score":0.41400018},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37573534},{"id":"https://openalex.org/C42475967","wikidata":"https://www.wikidata.org/wiki/Q194292","display_name":"Operations research","level":1,"score":0.36750835},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33868757},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12763107},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C39432304","wikidata":"https://www.wikidata.org/wiki/Q188847","display_name":"Environmental science","level":0,"score":0.0},{"id":"https://openalex.org/C136264566","wikidata":"https://www.wikidata.org/wiki/Q159810","display_name":"Economy","level":1,"score":0.0},{"id":"https://openalex.org/C107826830","wikidata":"https://www.wikidata.org/wiki/Q929380","display_name":"Environmental resource management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sera.2007.66","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.63}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1493971325","https://openalex.org/W1571681405","https://openalex.org/W1575746526","https://openalex.org/W1608292140","https://openalex.org/W1999183681","https://openalex.org/W2002016471","https://openalex.org/W2049399010","https://openalex.org/W2249846468","https://openalex.org/W2338125670","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4390116635","https://openalex.org/W4378421046","https://openalex.org/W4210475590","https://openalex.org/W413173186","https://openalex.org/W2359381821","https://openalex.org/W2342878651","https://openalex.org/W2081747745","https://openalex.org/W2050029343","https://openalex.org/W2023765235","https://openalex.org/W1987426877"],"abstract_inverted_index":{"Capacity":[0],"planning":[1,94,182],"is":[2,27,53,96,158,183],"a":[3,54,107,129,147],"technique":[4],"which":[5,155],"can":[6,47],"be":[7,48,160],"used":[8,76,104],"to":[9,159],"predict":[10],"the":[11,19,35,68,74,78,83,86,92,102,123,139,156,175],"computing":[12],"resource":[13,44,60],"needs":[14,45],"of":[15,28,41,67,85,101,111,143,146,164],"an":[16],"organization":[17],"for":[18,31,77,105,138,154],"future":[20],"after":[21],"studying":[22],"current":[23],"usage":[24],"patterns.":[25],"This":[26,120],"special":[29],"import":[30],"adaptive":[32],"enterprises,":[33],"given":[34],"large":[36,39],"infrastructure":[37],"and":[38,57,62,80],"number":[40],"users.":[42],"Determining":[43],"beforehand":[46],"very":[49],"beneficial":[50],"because":[51],"it":[52],"proactive":[55],"approach":[56],"helps":[58],"prevent":[59],"crunches":[61],"service":[63],"level":[64],"violations.":[65],"Accuracy":[66],"predicted":[69,176],"values,":[70],"however,":[71],"depends":[72],"upon":[73,82],"methods":[75,113,127,169],"forecast":[79],"also":[81,171],"accuracy":[84],"historical":[87,144],"data.":[88,99],"Historical":[89],"data":[90],"in":[91],"capacity":[93,181],"sense":[95],"system":[97],"performance":[98],"Most":[100],"approaches":[103],"such":[106],"prediction":[108,157],"make":[109],"use":[110],"statistical":[112,125],"or":[114],"are":[115],"based":[116,126,131],"on":[117,132],"queuing":[118],"theory.":[119],"paper":[121],"compares":[122],"traditional":[124],"with":[128],"method":[130,166],"neural":[133,140],"networks.":[134],"The":[135,162],"training":[136],"set":[137],"network":[141],"consists":[142],"values":[145],"metric":[148],"(for":[149],"example":[150],"CPU":[151],"utilization":[152],"percentage)":[153],"done.":[161,184],"advantages":[163],"this":[165],"over":[167],"other":[168],"have":[170],"been":[172],"discussed.":[173],"From":[174],"information,":[177],"we":[178],"illustrate":[179],"how":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2103716941","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2024-11-20T06:03:24.241138","created_date":"2016-06-24"}