iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/RIVF55975.2022.10013789
{"id":"https://openalex.org/W4317382973","doi":"https://doi.org/10.1109/rivf55975.2022.10013789","title":"A Hardware Implementation for Deep Reinforcement Learning Machine","display_name":"A Hardware Implementation for Deep Reinforcement Learning Machine","publication_year":2022,"publication_date":"2022-12-20","ids":{"openalex":"https://openalex.org/W4317382973","doi":"https://doi.org/10.1109/rivf55975.2022.10013789"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/rivf55975.2022.10013789","pdf_url":null,"source":{"id":"https://openalex.org/S4363608274","display_name":"2022 RIVF International Conference on Computing and Communication Technologies (RIVF)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044094539","display_name":"Pham Cong Thinh","orcid":null},"institutions":[{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Pham Cong Thinh","raw_affiliation_strings":["University of Information Technology, Ho Chi Minh City, Vietnam","Vietnam National University, Ho Chi Minh City, Vietnam"],"affiliations":[{"raw_affiliation_string":"University of Information Technology, Ho Chi Minh City, Vietnam","institution_ids":[]},{"raw_affiliation_string":"Vietnam National University, Ho Chi Minh City, Vietnam","institution_ids":["https://openalex.org/I123565023"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069561848","display_name":"Nguyen Tien Luan","orcid":null},"institutions":[{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Nguyen Tien Luan","raw_affiliation_strings":["University of Information Technology, Ho Chi Minh City, Vietnam","Vietnam National University, Ho Chi Minh City, Vietnam"],"affiliations":[{"raw_affiliation_string":"University of Information Technology, Ho Chi Minh City, Vietnam","institution_ids":[]},{"raw_affiliation_string":"Vietnam National University, Ho Chi Minh City, Vietnam","institution_ids":["https://openalex.org/I123565023"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062037367","display_name":"Duc Khai Lam","orcid":"https://orcid.org/0000-0003-2711-1408"},"institutions":[{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Lam Duc Khai","raw_affiliation_strings":["University of Information Technology, Ho Chi Minh City, Vietnam","Vietnam National University, Ho Chi Minh City, Vietnam"],"affiliations":[{"raw_affiliation_string":"University of Information Technology, Ho Chi Minh City, Vietnam","institution_ids":[]},{"raw_affiliation_string":"Vietnam National University, Ho Chi Minh City, Vietnam","institution_ids":["https://openalex.org/I123565023"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":72},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning Algorithms","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning Algorithms","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11975","display_name":"Application of Genetic Programming in Machine Learning","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.78733134},{"id":"https://openalex.org/keywords/reinforcement-learning","display_name":"Reinforcement Learning","score":0.570861},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.512601},{"id":"https://openalex.org/keywords/virtex","display_name":"Virtex","score":0.4116845}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8987519},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.808589},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.78733134},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.60398614},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5336728},{"id":"https://openalex.org/C2984118289","wikidata":"https://www.wikidata.org/wiki/Q29954","display_name":"Power consumption","level":3,"score":0.4973593},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.48030275},{"id":"https://openalex.org/C65232700","wikidata":"https://www.wikidata.org/wiki/Q5656403","display_name":"Hardware architecture","level":3,"score":0.42814538},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.41849107},{"id":"https://openalex.org/C2777674469","wikidata":"https://www.wikidata.org/wiki/Q20741011","display_name":"Virtex","level":3,"score":0.4116845},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.4109368},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.41008037},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.39949062},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3863297},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.36141604},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.12514314},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.0965381},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/rivf55975.2022.10013789","pdf_url":null,"source":{"id":"https://openalex.org/S4363608274","display_name":"2022 RIVF International Conference on Computing and Communication Technologies (RIVF)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.59}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1658008008","https://openalex.org/W2145339207","https://openalex.org/W2752322585","https://openalex.org/W2904195769","https://openalex.org/W2931767035","https://openalex.org/W2948193168","https://openalex.org/W2962684312","https://openalex.org/W2998165854","https://openalex.org/W3128973049","https://openalex.org/W3213742958"],"related_works":["https://openalex.org/W2546284597","https://openalex.org/W2544043553","https://openalex.org/W2540393334","https://openalex.org/W2390042878","https://openalex.org/W2348562861","https://openalex.org/W2281932057","https://openalex.org/W2271847574","https://openalex.org/W2170552397","https://openalex.org/W2085828379","https://openalex.org/W2062932566"],"abstract_inverted_index":{"Deep":[0,28],"Reinforcement":[1],"Learning":[2],"(DRL)":[3],"algorithm":[4],"is":[5,123,129],"used":[6],"in":[7,100],"many":[8,39],"areas":[9],"of":[10,102],"life":[11],"where":[12],"an":[13],"agent":[14],"learns":[15],"how":[16],"to":[17,22,47,59],"interact":[18],"with":[19,90,109],"the":[20,61,83,121,126],"environment":[21],"achieve":[23],"a":[24,33,56,91],"certain":[25],"goal.":[26],"The":[27,42],"Q-Network":[29],"(DQN)":[30],"has":[31,116],"become":[32],"benchmark":[34],"and":[35,74,106,125],"building":[36],"point":[37],"for":[38,65,76],"DRL":[40],"researchers.":[41],"DQN":[43,62],"maps":[44],"input":[45],"states":[46],"(action,":[48],"Q-value)":[49],"pairs.":[50],"In":[51],"this":[52],"paper,":[53],"we":[54],"propose":[55],"hardware":[57,78,103],"architecture":[58],"implement":[60],"algorithm,":[63],"suitable":[64,75],"real-time":[66],"applications.":[67],"Its":[68],"main":[69],"features":[70],"are":[71,98],"low":[72],"power":[73,107,127],"limited":[77],"resources.":[79],"We":[80],"have":[81],"implemented":[82],"design":[84],"on":[85],"Xilinx":[86],"Virtex":[87],"7":[88],"(XC7VX485tffg1927-1)":[89],"Mountain":[92],"Car":[93],"simulation":[94],"environment.":[95],"Performance":[96],"results":[97],"evaluated":[99],"terms":[101],"resources,":[104],"frequency,":[105],"consumption":[108,128],"other":[110],"reinforcement":[111],"learning":[112],"algorithms.":[113],"Our":[114],"work":[115],"been":[117],"processed":[118],"at":[119],"131MHz,":[120],"neural":[122],"2x24x24x3":[124],"0.921":[130],"w.":[131]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4317382973","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-10-23T06:28:30.332101","created_date":"2023-01-19"}