{"id":"https://openalex.org/W4389168227","doi":"https://doi.org/10.1109/qce57702.2023.00031","title":"MORE: Measurement and Correlation Based Variational Quantum Circuit for Multi-Classification","display_name":"MORE: Measurement and Correlation Based Variational Quantum Circuit for Multi-Classification","publication_year":2023,"publication_date":"2023-09-17","ids":{"openalex":"https://openalex.org/W4389168227","doi":"https://doi.org/10.1109/qce57702.2023.00031"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/qce57702.2023.00031","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2307.11875","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028437035","display_name":"Jindi Wu","orcid":"https://orcid.org/0000-0002-0489-0616"},"institutions":[{"id":"https://openalex.org/I16285277","display_name":"William & Mary","ror":"https://ror.org/03hsf0573","country_code":"US","type":"education","lineage":["https://openalex.org/I16285277"]},{"id":"https://openalex.org/I267592682","display_name":"Williams (United States)","ror":"https://ror.org/007zhvp17","country_code":"US","type":"company","lineage":["https://openalex.org/I267592682"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jindi Wu","raw_affiliation_strings":["William & Mary,Department of Computer Science,Williamsburg,VA,USA"],"affiliations":[{"raw_affiliation_string":"William & Mary,Department of Computer Science,Williamsburg,VA,USA","institution_ids":["https://openalex.org/I16285277","https://openalex.org/I267592682"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072993455","display_name":"Tianjie Hu","orcid":"https://orcid.org/0009-0003-6195-0050"},"institutions":[{"id":"https://openalex.org/I16285277","display_name":"William & Mary","ror":"https://ror.org/03hsf0573","country_code":"US","type":"education","lineage":["https://openalex.org/I16285277"]},{"id":"https://openalex.org/I267592682","display_name":"Williams (United States)","ror":"https://ror.org/007zhvp17","country_code":"US","type":"company","lineage":["https://openalex.org/I267592682"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianjie Hu","raw_affiliation_strings":["William & Mary,Department of Computer Science,Williamsburg,VA,USA"],"affiliations":[{"raw_affiliation_string":"William & Mary,Department of Computer Science,Williamsburg,VA,USA","institution_ids":["https://openalex.org/I16285277","https://openalex.org/I267592682"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100426184","display_name":"Qun Li","orcid":"https://orcid.org/0000-0003-2231-6615"},"institutions":[{"id":"https://openalex.org/I16285277","display_name":"William & Mary","ror":"https://ror.org/03hsf0573","country_code":"US","type":"education","lineage":["https://openalex.org/I16285277"]},{"id":"https://openalex.org/I267592682","display_name":"Williams (United States)","ror":"https://ror.org/007zhvp17","country_code":"US","type":"company","lineage":["https://openalex.org/I267592682"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qun Li","raw_affiliation_strings":["William & Mary,Department of Computer Science,Williamsburg,VA,USA"],"affiliations":[{"raw_affiliation_string":"William & Mary,Department of Computer Science,Williamsburg,VA,USA","institution_ids":["https://openalex.org/I16285277","https://openalex.org/I267592682"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.557,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.712313,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10682","display_name":"Quantum Computing and Simulation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10682","display_name":"Quantum Computing and Simulation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10020","display_name":"Quantum Information and Computation","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10622","display_name":"Foundations of Quantum Mechanics and Interpretations","score":0.9841,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ansatz","display_name":"Ansatz","score":0.57456446},{"id":"https://openalex.org/keywords/fault-tolerant-quantum-computation","display_name":"Fault-tolerant Quantum Computation","score":0.533624},{"id":"https://openalex.org/keywords/quantum-computation","display_name":"Quantum Computation","score":0.528997},{"id":"https://openalex.org/keywords/quantum-machine-learning","display_name":"Quantum Machine Learning","score":0.526483},{"id":"https://openalex.org/keywords/quantum-circuit","display_name":"Quantum circuit","score":0.52622056},{"id":"https://openalex.org/keywords/quantum-error-correction","display_name":"Quantum Error Correction","score":0.52254},{"id":"https://openalex.org/keywords/computation","display_name":"Computation","score":0.516656}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.595567},{"id":"https://openalex.org/C130979935","wikidata":"https://www.wikidata.org/wiki/Q568954","display_name":"Ansatz","level":2,"score":0.57456446},{"id":"https://openalex.org/C58053490","wikidata":"https://www.wikidata.org/wiki/Q176555","display_name":"Quantum computer","level":3,"score":0.56998515},{"id":"https://openalex.org/C15706264","wikidata":"https://www.wikidata.org/wiki/Q230883","display_name":"Quantum state","level":3,"score":0.5524567},{"id":"https://openalex.org/C203087015","wikidata":"https://www.wikidata.org/wiki/Q378201","display_name":"Qubit","level":3,"score":0.54858613},{"id":"https://openalex.org/C84114770","wikidata":"https://www.wikidata.org/wiki/Q46344","display_name":"Quantum","level":2,"score":0.5472323},{"id":"https://openalex.org/C124148022","wikidata":"https://www.wikidata.org/wiki/Q2122210","display_name":"Quantum circuit","level":5,"score":0.52622056},{"id":"https://openalex.org/C2779094486","wikidata":"https://www.wikidata.org/wiki/Q18811578","display_name":"Quantum machine learning","level":4,"score":0.4798993},{"id":"https://openalex.org/C137019171","wikidata":"https://www.wikidata.org/wiki/Q2623817","display_name":"Quantum algorithm","level":3,"score":0.4705831},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44830313},{"id":"https://openalex.org/C32848918","wikidata":"https://www.wikidata.org/wiki/Q845789","display_name":"Observable","level":2,"score":0.44417977},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.43048355},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39069468},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3887921},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32550654},{"id":"https://openalex.org/C186468114","wikidata":"https://www.wikidata.org/wiki/Q836478","display_name":"Quantum network","level":4,"score":0.3024798},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.19752514},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.18411937}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/qce57702.2023.00031","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.11875","pdf_url":"https://arxiv.org/pdf/2307.11875","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.11875","pdf_url":"https://arxiv.org/pdf/2307.11875","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-1816399"}],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1529944915","https://openalex.org/W2007339694","https://openalex.org/W2015811642","https://openalex.org/W2036941747","https://openalex.org/W2103956991","https://openalex.org/W2119046658","https://openalex.org/W2124269824","https://openalex.org/W2129041159","https://openalex.org/W2147435884","https://openalex.org/W2486513559","https://openalex.org/W2559394418","https://openalex.org/W2755255888","https://openalex.org/W2801908214","https://openalex.org/W2887925010","https://openalex.org/W2920786326","https://openalex.org/W2950180292","https://openalex.org/W2963060324","https://openalex.org/W2976668976","https://openalex.org/W2982169647","https://openalex.org/W3007475506","https://openalex.org/W3024243470","https://openalex.org/W3036315581","https://openalex.org/W3043548570","https://openalex.org/W3098400458","https://openalex.org/W3098543282","https://openalex.org/W3098662938","https://openalex.org/W3098965398","https://openalex.org/W3099734242","https://openalex.org/W3104428150","https://openalex.org/W3111701537","https://openalex.org/W3112481933","https://openalex.org/W3129848661","https://openalex.org/W3137120888","https://openalex.org/W3176727534","https://openalex.org/W3185746625","https://openalex.org/W3192227636","https://openalex.org/W3197589015","https://openalex.org/W3211134441","https://openalex.org/W4205174052","https://openalex.org/W4206687052","https://openalex.org/W4210600166","https://openalex.org/W4220747861","https://openalex.org/W4287262342","https://openalex.org/W4300988299","https://openalex.org/W4307929343","https://openalex.org/W4309713817","https://openalex.org/W4312936103","https://openalex.org/W4313018127","https://openalex.org/W4376983366","https://openalex.org/W55174484"],"related_works":["https://openalex.org/W4382240995","https://openalex.org/W4312288010","https://openalex.org/W4309028366","https://openalex.org/W4298182858","https://openalex.org/W4289534122","https://openalex.org/W4285326889","https://openalex.org/W3203550463","https://openalex.org/W3192002582","https://openalex.org/W3184624667","https://openalex.org/W2906136444"],"abstract_inverted_index":{"Quantum":[0],"computing":[1,53],"has":[2],"shown":[3],"considerable":[4],"promise":[5],"for":[6,58,75,157],"compute-intensive":[7],"tasks":[8,15,47],"in":[9,32],"recent":[10],"years.":[11],"For":[12],"instance,":[13],"classification":[14,46],"based":[16,79],"on":[17,215],"quantum":[18,39,52,69,81,99,132,155,162,166,183,194,220,235],"neural":[19],"networks":[20],"(QNN)":[21],"have":[22,29],"garnered":[23],"significant":[24],"interest":[25],"from":[26,111,141],"researchers":[27],"and":[28,77,180,209,218,233],"been":[30],"evaluated":[31],"various":[33],"scenarios.":[34],"However,":[35],"the":[36,56,85,98,108,112,121,131,138,142,148,154,160,174,177,186,198,205],"majority":[37],"of":[38,101,123],"classifiers":[40,91],"are":[41],"currently":[42],"limited":[43,234],"to":[44,49,136,152,172],"binary":[45,90],"due":[48],"either":[50],"constrained":[51],"resources":[54],"or":[55],"need":[57],"intensive":[59],"classical":[60],"post-processing.":[61],"In":[62],"this":[63,202],"paper,":[64],"we":[65,115,146],"propose":[66],"an":[67],"efficient":[68],"multi-classifier":[70],"called":[71],"MORE,":[72,227],"which":[73],"stands":[74],"measurement":[76,143],"correlation":[78,149],"variational":[80,87,161],"multi-classifier.":[82],"MORE":[83],"adopts":[84],"same":[86],"ansatz":[88,232],"as":[89],"while":[92],"performing":[93],"multi-classification":[94],"by":[95,191],"fully":[96],"utilizing":[97],"information":[100,110],"a":[102,124,230],"single":[103],"readout":[104,113,139],"qubit.":[105],"To":[106],"extract":[107],"complete":[109],"qubit,":[114],"select":[116],"three":[117],"observables":[118],"that":[119,226],"form":[120],"basis":[122],"two-dimensional":[125],"Hilbert":[126],"space.":[127],"We":[128,200],"then":[129],"use":[130],"state":[133,140],"tomography":[134],"technique":[135],"reconstruct":[137],"results.":[144],"Afterward,":[145],"explore":[147],"between":[150,176],"classes":[151,158],"determine":[153],"labels":[156],"using":[159,197,204,229],"clustering":[163],"approach.":[164],"Next,":[165],"label-based":[167],"supervised":[168],"learning":[169],"is":[170,189],"performed":[171],"identify":[173],"mapping":[175],"input":[178],"data":[179],"their":[181],"corresponding":[182],"labels.":[184],"Finally,":[185],"predicted":[187],"label":[188,195],"determined":[190],"its":[192],"closest":[193],"when":[196],"classifier.":[199],"implement":[201],"approach":[203],"Qiskit":[206],"Python":[207],"library":[208],"evaluate":[210],"it":[211],"through":[212],"extensive":[213],"experiments":[214],"both":[216],"noise-free":[217],"noisy":[219],"systems.":[221],"Our":[222],"evaluation":[223],"results":[224],"demonstrate":[225],"despite":[228],"simple":[231],"resources,":[236],"achieves":[237],"advanced":[238],"performance.":[239]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389168227","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-09T00:02:06.434355","created_date":"2023-12-01"}