iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/LSP.2020.3020215
{"id":"https://openalex.org/W3081182628","doi":"https://doi.org/10.1109/lsp.2020.3020215","title":"Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction","display_name":"Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3081182628","doi":"https://doi.org/10.1109/lsp.2020.3020215","mag":"3081182628","pmid":"https://pubmed.ncbi.nlm.nih.gov/33746496"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/lsp.2020.3020215","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1109/lsp.2020.3020215","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086875583","display_name":"Mo Han","orcid":"https://orcid.org/0000-0003-0734-8256"},"institutions":[{"id":"https://openalex.org/I12912129","display_name":"Northeastern University","ror":"https://ror.org/04t5xt781","country_code":"US","type":"education","lineage":["https://openalex.org/I12912129"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mo Han","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA","institution_ids":["https://openalex.org/I12912129"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043725462","display_name":"Ozan \u00d6zdenizci","orcid":"https://orcid.org/0000-0002-5432-2422"},"institutions":[{"id":"https://openalex.org/I12912129","display_name":"Northeastern University","ror":"https://ror.org/04t5xt781","country_code":"US","type":"education","lineage":["https://openalex.org/I12912129"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ozan Ozdenizci","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA","institution_ids":["https://openalex.org/I12912129"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100423404","display_name":"Ye Wang","orcid":"https://orcid.org/0000-0001-5220-1830"},"institutions":[{"id":"https://openalex.org/I4210159266","display_name":"Mitsubishi Electric (United States)","ror":"https://ror.org/053jnhe44","country_code":"US","type":"company","lineage":["https://openalex.org/I1306287861","https://openalex.org/I4210133125","https://openalex.org/I4210159266"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ye Wang","raw_affiliation_strings":["Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA"],"affiliations":[{"raw_affiliation_string":"Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA","institution_ids":["https://openalex.org/I4210159266"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023338067","display_name":"Toshiaki Koike\u2010Akino","orcid":"https://orcid.org/0000-0002-2578-5372"},"institutions":[{"id":"https://openalex.org/I4210159266","display_name":"Mitsubishi Electric (United States)","ror":"https://ror.org/053jnhe44","country_code":"US","type":"company","lineage":["https://openalex.org/I1306287861","https://openalex.org/I4210133125","https://openalex.org/I4210159266"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Toshiaki Koike-Akino","raw_affiliation_strings":["Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA"],"affiliations":[{"raw_affiliation_string":"Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA","institution_ids":["https://openalex.org/I4210159266"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083261801","display_name":"Deniz Erdo\u011fmu\u015f","orcid":"https://orcid.org/0000-0002-1114-3539"},"institutions":[{"id":"https://openalex.org/I12912129","display_name":"Northeastern University","ror":"https://ror.org/04t5xt781","country_code":"US","type":"education","lineage":["https://openalex.org/I12912129"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Deniz Erdogmus","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Cognitive Systems Laboratory, Northeastern University, Boston, USA","institution_ids":["https://openalex.org/I12912129"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.186,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.999931,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"27","issue":null,"first_page":"1565","last_page":"1569"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"Brain-Computer Interfaces in Neuroscience and Medicine","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"Brain-Computer Interfaces in Neuroscience and Medicine","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10784","display_name":"Analysis of Electromyography Signal Processing","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11021","display_name":"Analysis of Electrocardiogram Signals","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6887494},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6479505},{"id":"https://openalex.org/keywords/adaptability","display_name":"Adaptability","score":0.55455834},{"id":"https://openalex.org/keywords/sensory-feedback","display_name":"Sensory Feedback","score":0.544122},{"id":"https://openalex.org/keywords/signal-processing","display_name":"Signal Processing","score":0.52387},{"id":"https://openalex.org/keywords/deep-learning-for-eeg","display_name":"Deep Learning for EEG","score":0.522069},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.502472}],"concepts":[{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.7745662},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6949761},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6887494},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6479505},{"id":"https://openalex.org/C177606310","wikidata":"https://www.wikidata.org/wiki/Q5674297","display_name":"Adaptability","level":2,"score":0.55455834},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50656164},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.49869347},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48709345},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.46762472},{"id":"https://openalex.org/C45357846","wikidata":"https://www.wikidata.org/wiki/Q2001982","display_name":"Notation","level":2,"score":0.42008445},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.17787418},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1463364},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/lsp.2020.3020215","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.11426","pdf_url":"https://arxiv.org/pdf/2008.11426","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977990","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/33746496","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2008.11426","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/lsp.2020.3020215","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[{"score":0.77,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"IIS-1715858"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-1544895"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"IIS-1149570"},{"funder":"https://openalex.org/F4320306085","funder_display_name":"U.S. Department of Health and Human Services","award_id":"90RE5017-02-01"},{"funder":"https://openalex.org/F4320332161","funder_display_name":"National Institutes of Health","award_id":"R01DC009834"}],"datasets":[],"versions":["https://openalex.org/W3081182628","https://openalex.org/W3104097443"],"referenced_works_count":22,"referenced_works":["https://openalex.org/W2042439767","https://openalex.org/W2051218759","https://openalex.org/W2056545070","https://openalex.org/W2093792557","https://openalex.org/W2146010402","https://openalex.org/W2170883741","https://openalex.org/W2325552340","https://openalex.org/W2464711960","https://openalex.org/W2516710120","https://openalex.org/W2563752936","https://openalex.org/W2621350877","https://openalex.org/W2797694788","https://openalex.org/W2894288309","https://openalex.org/W2904296567","https://openalex.org/W2925281733","https://openalex.org/W2958197594","https://openalex.org/W2976692647","https://openalex.org/W3005195149","https://openalex.org/W3007149882","https://openalex.org/W3011997138","https://openalex.org/W3082279017","https://openalex.org/W3103177978"],"related_works":["https://openalex.org/W3013693939","https://openalex.org/W2389739210","https://openalex.org/W2387399993","https://openalex.org/W2387293848","https://openalex.org/W2365736347","https://openalex.org/W2357124094","https://openalex.org/W2348924972","https://openalex.org/W2159052453","https://openalex.org/W2070040999","https://openalex.org/W2047454415"],"abstract_inverted_index":{"Recent":[0],"developments":[1],"in":[2,16,29,74,115],"biosignal":[3],"processing":[4],"have":[5],"enabled":[6],"users":[7,36,91],"to":[8,52,76,89,109,123],"exploit":[9,53],"their":[10],"physiological":[11,26],"status":[12],"for":[13,49],"manipulating":[14],"devices":[15],"a":[17,124],"reliable":[18],"and":[19,37,64,71,92,120],"safe":[20],"manner.":[21],"One":[22],"major":[23],"challenge":[24],"of":[25,32,103,118,127],"sensing":[27],"lies":[28],"the":[30,59,78,83,101,104],"variability":[31],"biosignals":[33],"across":[34],"different":[35],"tasks.":[38,94],"To":[39],"address":[40],"this":[41],"issue,":[42],"we":[43],"propose":[44],"an":[45],"adversarial":[46],"feature":[47,85],"extractor":[48,86],"transfer":[50,98],"learning":[51],"disentangled":[54],"universal":[55],"representations.":[56],"We":[57],"consider":[58],"trade-off":[60],"between":[61],"task-relevant":[62],"features":[63],"user-discriminative":[65],"information":[66],"by":[67],"introducing":[68],"additional":[69],"adversary":[70],"nuisance":[72],"networks":[73],"order":[75],"manipulate":[77],"latent":[79],"representations":[80],"such":[81],"that":[82],"learned":[84],"is":[87],"applicable":[88],"unknown":[90],"various":[93],"Results":[95],"on":[96],"cross-subject":[97],"evaluations":[99],"exhibit":[100],"benefits":[102],"proposed":[105],"framework,":[106],"with":[107],"up":[108],"$8.8\\%$":[113],"improvement":[114],"average":[116],"accuracy":[117],"classification,":[119],"demonstrate":[121],"adaptability":[122],"broader":[125],"range":[126],"subjects.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3081182628","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3}],"updated_date":"2024-11-29T17:40:00.678045","created_date":"2020-09-01"}