{"id":"https://openalex.org/W3193349642","doi":"https://doi.org/10.1109/jbhi.2021.3106341","title":"Exploiting Shared Knowledge From Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation","display_name":"Exploiting Shared Knowledge From Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation","publication_year":2021,"publication_date":"2021-08-20","ids":{"openalex":"https://openalex.org/W3193349642","doi":"https://doi.org/10.1109/jbhi.2021.3106341","mag":"3193349642","pmid":"https://pubmed.ncbi.nlm.nih.gov/34415840"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3106341","pdf_url":"https://ieeexplore.ieee.org/ielx7/6221020/9605141/09520286.pdf","source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ieeexplore.ieee.org/ielx7/6221020/9605141/09520286.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100444188","display_name":"Yichi Zhang","orcid":"https://orcid.org/0000-0002-4292-6835"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yichi Zhang","raw_affiliation_strings":["School of Biological Science and Medical Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Biological Science and Medical Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089248684","display_name":"Qingcheng Liao","orcid":null},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingcheng Liao","raw_affiliation_strings":["School of Biological Science and Medical Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Biological Science and Medical Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071778068","display_name":"Lin Yuan","orcid":"https://orcid.org/0000-0003-1505-8611"},"institutions":[{"id":"https://openalex.org/I9086337","display_name":"Taiyuan University of Technology","ror":"https://ror.org/03kv08d37","country_code":"CN","type":"education","lineage":["https://openalex.org/I9086337"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lin Yuan","raw_affiliation_strings":["College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China"],"affiliations":[{"raw_affiliation_string":"College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China","institution_ids":["https://openalex.org/I9086337"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004145814","display_name":"He Zhu","orcid":"https://orcid.org/0000-0001-9606-150X"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"He Zhu","raw_affiliation_strings":["School of Computer Science and Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101116386","display_name":"Jiezhen Xing","orcid":null},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiezhen Xing","raw_affiliation_strings":["School of Biological Science and Medical Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Biological Science and Medical Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075102795","display_name":"Jicong Zhang","orcid":"https://orcid.org/0000-0002-3325-5371"},"institutions":[{"id":"https://openalex.org/I4210165198","display_name":"Beijing Advanced Sciences and Innovation Center","ror":"https://ror.org/05qm21180","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165198"]},{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]},{"id":"https://openalex.org/I4210135175","display_name":"Hefei Institute of Technology Innovation","ror":"https://ror.org/044wmmj34","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210135175"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jicong Zhang","raw_affiliation_strings":["Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beijing, China","Beijing Advanced Innovation Centre for Biomedical Engineering, Beijing, China","Hefei Innovation Research Institute, Beihang University, Hefei, China","School of Biological Science and Medical Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beijing, China","institution_ids":["https://openalex.org/I4210165198"]},{"raw_affiliation_string":"Beijing Advanced Innovation Centre for Biomedical Engineering, Beijing, China","institution_ids":["https://openalex.org/I4210165198"]},{"raw_affiliation_string":"School of Biological Science and Medical Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]},{"raw_affiliation_string":"Hefei Innovation Research Institute, Beihang University, Hefei, China","institution_ids":["https://openalex.org/I4210135175","https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.81,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":32,"citation_normalized_percentile":{"value":0.999951,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"25","issue":"11","first_page":"4152","last_page":"4162"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics in Medical Imaging Analysis","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Medicine","score":0.9773,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6745604},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.491679}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7023365},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7010477},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6745604},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62435794},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.48699173},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45322925},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.42369044},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35047263},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000086382","descriptor_name":"COVID-19","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D008168","descriptor_name":"Lung","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D019985","descriptor_name":"Benchmarking","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008168","descriptor_name":"Lung","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":false},{"descriptor_ui":"D000086402","descriptor_name":"SARS-CoV-2","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D014057","descriptor_name":"Tomography, X-Ray Computed","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3106341","pdf_url":"https://ieeexplore.ieee.org/ielx7/6221020/9605141/09520286.pdf","source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843066","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2012.15564","pdf_url":"https://arxiv.org/pdf/2012.15564","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34415840","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3106341","pdf_url":"https://ieeexplore.ieee.org/ielx7/6221020/9605141/09520286.pdf","source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.64}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61301005"}],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W2463818697","https://openalex.org/W2464708700","https://openalex.org/W2530816535","https://openalex.org/W2798122215","https://openalex.org/W2804047627","https://openalex.org/W2888358068","https://openalex.org/W2889615630","https://openalex.org/W2910094941","https://openalex.org/W2915126261","https://openalex.org/W2951839332","https://openalex.org/W2951970475","https://openalex.org/W2963920537","https://openalex.org/W2964227007","https://openalex.org/W2964317695","https://openalex.org/W2970971581","https://openalex.org/W2971013993","https://openalex.org/W2979770789","https://openalex.org/W2984353870","https://openalex.org/W2993476821","https://openalex.org/W2996290406","https://openalex.org/W2998957378","https://openalex.org/W3004906315","https://openalex.org/W3008985036","https://openalex.org/W3010278110","https://openalex.org/W3011041531","https://openalex.org/W3011414569","https://openalex.org/W3012817089","https://openalex.org/W3013633552","https://openalex.org/W3014795415","https://openalex.org/W3017424432","https://openalex.org/W3018759429","https://openalex.org/W3020374319","https://openalex.org/W3020653337","https://openalex.org/W3025464096","https://openalex.org/W3027763298","https://openalex.org/W3027914507","https://openalex.org/W3033272814","https://openalex.org/W3080568059","https://openalex.org/W3082003320","https://openalex.org/W3085306326","https://openalex.org/W3090605478","https://openalex.org/W3092540957","https://openalex.org/W3092560581","https://openalex.org/W3092624683","https://openalex.org/W3098046820","https://openalex.org/W3098394437","https://openalex.org/W3104810384","https://openalex.org/W3107214063","https://openalex.org/W3108591672","https://openalex.org/W3112701542","https://openalex.org/W3115781494","https://openalex.org/W3133020722","https://openalex.org/W3138558221","https://openalex.org/W3166013884","https://openalex.org/W3176031707","https://openalex.org/W3183302989","https://openalex.org/W4294740541","https://openalex.org/W4295312788","https://openalex.org/W4309233581"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2761785940","https://openalex.org/W259157601","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W2153315159"],"abstract_inverted_index":{"The":[0,103],"novel":[1,84],"Coronavirus":[2],"disease":[3],"(COVID-19)":[4],"is":[5],"a":[6,83,107,122,136],"highly":[7],"contagious":[8],"virus":[9],"and":[10,121,148,156,190,227],"has":[11],"spread":[12],"all":[13,23],"over":[14],"the":[15,38,44,49,66,73,150,235,241],"world,":[16],"posing":[17],"an":[18,34],"extremely":[19],"serious":[20],"threat":[21],"to":[22,72,89,110,125,140,152,184],"countries.":[24],"Automatic":[25],"lung":[26,61,100,113],"infection":[27,101],"segmentation":[28,63,76,215],"from":[29,93,174],"computed":[30],"tomography":[31],"(CT)":[32],"plays":[33],"important":[35],"role":[36],"in":[37,48,186,192,234,240],"quantitative":[39],"analysis":[40],"of":[41,51,106,145,159,243],"COVID-19.":[42],"However,":[43],"major":[45],"challenge":[46],"lies":[47],"inadequacy":[50],"annotated":[52],"COVID-19":[53,75,98,132,160,169,239],"datasets.":[54],"Currently,":[55],"there":[56],"are":[57],"several":[58],"public":[59],"non-COVID":[60,94,119,175],"lesion":[62,114],"datasets,":[64],"providing":[65],"potential":[67,230],"for":[68,96,231],"generalizing":[69],"useful":[70],"information":[71],"related":[74],"task.":[77],"In":[78,196],"this":[79],"paper,":[80],"we":[81],"propose":[82],"relation-driven":[85],"collaborative":[86,137],"learning":[87,138,226],"model":[88,104,151],"exploit":[90],"shared":[91,172],"knowledge":[92,173],"lesions":[95,176],"annotation-efficient":[97,224],"CT":[99,206],"segmentation.":[102],"consists":[105],"general":[108,112,155],"encoder":[109,124],"capture":[111],"features":[115,129],"based":[116,130],"on":[117,127,131,200],"multiple":[118],"lesions,":[120],"target":[123],"focus":[126],"task-specific":[128],"infections.":[133,161],"We":[134],"develop":[135],"scheme":[139],"regularize":[141],"feature-level":[142],"relation":[143],"consistency":[144],"given":[146],"input":[147],"encourage":[149],"learn":[153],"more":[154],"discriminative":[157],"representation":[158],"Extensive":[162],"experiments":[163],"demonstrate":[164],"that":[165,209],"trained":[166],"with":[167,182,205],"limited":[168],"data,":[170],"exploiting":[171],"can":[177],"further":[178],"improve":[179],"state-of-the-art":[180],"performance":[181],"up":[183],"3.0%":[185],"dice":[187],"similarity":[188],"coefficient":[189],"4.2%":[191],"normalized":[193],"surface":[194],"dice.":[195],"addition,":[197],"experimental":[198],"results":[199],"large":[201],"scale":[202],"2D":[203],"dataset":[204],"slices":[207],"show":[208],"our":[210],"method":[211,219],"significantly":[212],"outperforms":[213],"cutting-edge":[214],"methods":[216],"metrics.":[217],"Our":[218],"promotes":[220],"new":[221],"insights":[222],"into":[223],"deep":[225],"illustrates":[228],"strong":[229],"real-world":[232],"applications":[233],"global":[236],"fight":[237],"against":[238],"absence":[242],"sufficient":[244],"high-quality":[245],"annotations.":[246]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3193349642","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":4}],"updated_date":"2024-10-01T07:51:42.730608","created_date":"2021-08-30"}