{"id":"https://openalex.org/W4385329458","doi":"https://doi.org/10.1109/iwqos57198.2023.10188803","title":"Data-Driven Similarity-based Worker Recruitment Towards Multi-task Data Inference for Sparse Mobile Crowdsensing","display_name":"Data-Driven Similarity-based Worker Recruitment Towards Multi-task Data Inference for Sparse Mobile Crowdsensing","publication_year":2023,"publication_date":"2023-06-19","ids":{"openalex":"https://openalex.org/W4385329458","doi":"https://doi.org/10.1109/iwqos57198.2023.10188803"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwqos57198.2023.10188803","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033953325","display_name":"En Wang","orcid":"https://orcid.org/0000-0001-6112-2923"},"institutions":[{"id":"https://openalex.org/I4210134929","display_name":"Jilin Province Science and Technology Department","ror":"https://ror.org/049x38272","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210134929"]},{"id":"https://openalex.org/I194450716","display_name":"Jilin University","ror":"https://ror.org/00js3aw79","country_code":"CN","type":"education","lineage":["https://openalex.org/I194450716"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"En Wang","raw_affiliation_strings":["Department of Computer Science and Technology, Jilin University, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Jilin University, China","institution_ids":["https://openalex.org/I4210134929","https://openalex.org/I194450716"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002792842","display_name":"Zijie Tian","orcid":null},"institutions":[{"id":"https://openalex.org/I4210134929","display_name":"Jilin Province Science and Technology Department","ror":"https://ror.org/049x38272","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210134929"]},{"id":"https://openalex.org/I194450716","display_name":"Jilin University","ror":"https://ror.org/00js3aw79","country_code":"CN","type":"education","lineage":["https://openalex.org/I194450716"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zijie Tian","raw_affiliation_strings":["Department of Computer Science and Technology, Jilin University, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Jilin University, China","institution_ids":["https://openalex.org/I4210134929","https://openalex.org/I194450716"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045527959","display_name":"Yongjian Yang","orcid":"https://orcid.org/0000-0002-0056-3626"},"institutions":[{"id":"https://openalex.org/I4210134929","display_name":"Jilin Province Science and Technology Department","ror":"https://ror.org/049x38272","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210134929"]},{"id":"https://openalex.org/I194450716","display_name":"Jilin University","ror":"https://ror.org/00js3aw79","country_code":"CN","type":"education","lineage":["https://openalex.org/I194450716"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongjian Yang","raw_affiliation_strings":["Department of Computer Science and Technology, Jilin University, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Jilin University, China","institution_ids":["https://openalex.org/I4210134929","https://openalex.org/I194450716"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100373255","display_name":"Wenbin Liu","orcid":"https://orcid.org/0000-0002-4384-1446"},"institutions":[{"id":"https://openalex.org/I4210134929","display_name":"Jilin Province Science and Technology Department","ror":"https://ror.org/049x38272","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210134929"]},{"id":"https://openalex.org/I194450716","display_name":"Jilin University","ror":"https://ror.org/00js3aw79","country_code":"CN","type":"education","lineage":["https://openalex.org/I194450716"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenbin Liu","raw_affiliation_strings":["Department of Computer Science and Technology, Jilin University, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Jilin University, China","institution_ids":["https://openalex.org/I4210134929","https://openalex.org/I194450716"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075983659","display_name":"Baoju Li","orcid":"https://orcid.org/0000-0001-7122-0340"},"institutions":[{"id":"https://openalex.org/I4210134929","display_name":"Jilin Province Science and Technology Department","ror":"https://ror.org/049x38272","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210134929"]},{"id":"https://openalex.org/I194450716","display_name":"Jilin University","ror":"https://ror.org/00js3aw79","country_code":"CN","type":"education","lineage":["https://openalex.org/I194450716"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baoju Li","raw_affiliation_strings":["Department of Computer Science and Technology, Jilin University, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Jilin University, China","institution_ids":["https://openalex.org/I4210134929","https://openalex.org/I194450716"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008181744","display_name":"Nan Jiang","orcid":"https://orcid.org/0000-0003-1712-1872"},"institutions":[{"id":"https://openalex.org/I13985625","display_name":"East China Jiaotong University","ror":"https://ror.org/05x2f1m38","country_code":"CN","type":"education","lineage":["https://openalex.org/I13985625"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Nan Jiang","raw_affiliation_strings":["East China Jiaotong University, China"],"affiliations":[{"raw_affiliation_string":"East China Jiaotong University, China","institution_ids":["https://openalex.org/I13985625"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100600528","display_name":"Jie Wu","orcid":"https://orcid.org/0000-0002-3472-1717"},"institutions":[{"id":"https://openalex.org/I84392919","display_name":"Temple University","ror":"https://ror.org/00kx1jb78","country_code":"US","type":"education","lineage":["https://openalex.org/I84392919"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jie Wu","raw_affiliation_strings":["Temple University, USA"],"affiliations":[{"raw_affiliation_string":"Temple University, USA","institution_ids":["https://openalex.org/I84392919"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11704","display_name":"Crowdsourcing for Research and Data Collection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11704","display_name":"Crowdsourcing for Research and Data Collection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/social-sensing","display_name":"Social Sensing","score":0.621859},{"id":"https://openalex.org/keywords/mobile-sensing","display_name":"Mobile Sensing","score":0.600173},{"id":"https://openalex.org/keywords/participatory-sensing","display_name":"Participatory Sensing","score":0.594505},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5859325},{"id":"https://openalex.org/keywords/crowdsourcing","display_name":"Crowdsourcing","score":0.572448},{"id":"https://openalex.org/keywords/location-based-data","display_name":"Location-Based Data","score":0.506909},{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.49046585},{"id":"https://openalex.org/keywords/data-type","display_name":"Data type","score":0.44797415},{"id":"https://openalex.org/keywords/crowdsensing","display_name":"Crowdsensing","score":0.44631442}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7728593},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7457315},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5859325},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.57994735},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5604601},{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.49046585},{"id":"https://openalex.org/C138958017","wikidata":"https://www.wikidata.org/wiki/Q190087","display_name":"Data type","level":2,"score":0.44797415},{"id":"https://openalex.org/C133462117","wikidata":"https://www.wikidata.org/wiki/Q4929239","display_name":"Data collection","level":2,"score":0.44740677},{"id":"https://openalex.org/C2780821482","wikidata":"https://www.wikidata.org/wiki/Q25381721","display_name":"Crowdsensing","level":2,"score":0.44631442},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.41713932},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41450024},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3929393},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.21529114},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10683015},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.092610985},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.07673505},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwqos57198.2023.10188803","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.61,"display_name":"Decent work and economic growth","id":"https://metadata.un.org/sdg/8"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62272193,62102161,61972450"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2021ZD0112501,2021ZD0112502"}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1550742363","https://openalex.org/W1970931962","https://openalex.org/W1984127772","https://openalex.org/W2000285770","https://openalex.org/W2008348094","https://openalex.org/W2057041225","https://openalex.org/W2074536033","https://openalex.org/W2079329679","https://openalex.org/W2098759488","https://openalex.org/W2113786286","https://openalex.org/W2125826911","https://openalex.org/W2289648086","https://openalex.org/W2473808492","https://openalex.org/W2558570031","https://openalex.org/W2565659696","https://openalex.org/W2584274610","https://openalex.org/W2740307401","https://openalex.org/W2760893072","https://openalex.org/W2765580447","https://openalex.org/W2789572951","https://openalex.org/W2802962942","https://openalex.org/W2949041559","https://openalex.org/W2992607185","https://openalex.org/W2996863123","https://openalex.org/W2998503178","https://openalex.org/W3089103520","https://openalex.org/W3110669662","https://openalex.org/W3154890711","https://openalex.org/W3176609869","https://openalex.org/W3182346119","https://openalex.org/W89608058"],"related_works":["https://openalex.org/W4320802053","https://openalex.org/W4287604253","https://openalex.org/W308539617","https://openalex.org/W2806903871","https://openalex.org/W2608033733","https://openalex.org/W2563347706","https://openalex.org/W2474567666","https://openalex.org/W2319693127","https://openalex.org/W2072263576","https://openalex.org/W1940044583"],"abstract_inverted_index":{"Sparse":[0],"Mobile":[1],"Crowdsensing":[2],"is":[3,28,85,94,174,220],"an":[4,186],"emerging":[5],"paradigm":[6],"for":[7,87,158,189],"data":[8,24,70,98,101,111,126,132,136,157,171,178,191,243],"collection":[9],"with":[10,241],"budgets":[11],"and":[12,25,51,128,135,193,205],"workers'":[13],"limitations'":[14],"which":[15,117,149,173,219,245],"recruits":[16],"workers":[17,153,222],"to":[18,32,43,71,119,130,151,154,169,176,223,227],"sense":[19,52,155,224],"a":[20,120,146,159,210],"part":[21],"of":[22,48,197,218,250],"spatio-temporal":[23,39],"infer":[26],"what":[27],"unsensed.":[29],"In":[30,138],"order":[31],"achieve":[33],"high":[34],"inferring":[35],"accuracy":[36],"in":[37,113,145],"all":[38],"areas,":[40],"we":[41,77,141,163,183,208],"need":[42],"measure":[44,72,194],"the":[45,60,64,73,89,97,166,195,216,229,248],"importance":[46,196],"level":[47,66,84],"each":[49,198],"area":[50],"some":[53],"important":[54,156,225],"ones.":[55],"Existing":[56],"works":[57],"usually":[58,108],"use":[59],"average":[61],"distance":[62,81],"or":[63],"difficulty":[65,83],"inferred":[67],"by":[68,96,202],"historical":[69],"area's":[74],"importance.":[75,90,179],"However,":[76],"argue":[78],"that":[79],"neither":[80],"nor":[82],"suitable":[86],"measuring":[88],"A":[91],"better":[92],"approach":[93],"inspired":[95,201],"itself,":[99],"i.e.,":[100],"similarity":[102,192],"among":[103],"different":[104],"areas.":[105],"Furthermore,":[106],"there":[107],"exist":[109],"multiple":[110,242],"types":[112],"sparse":[114],"mobile":[115],"crowdsensing,":[116],"leads":[118],"more":[121],"complex":[122],"inference":[123,230],"from":[124],"two-dimensional":[125],"(spatial":[127],"temporal)":[129],"three-dimensional":[131,160,190],"(spatial,":[133],"temporal,":[134],"type).":[137],"this":[139],"paper,":[140],"study":[142],"worker":[143,211],"recruitment":[144,212],"multi-task":[147],"scenario,":[148],"aims":[150],"recruit":[152],"inference.":[161],"Specifically,":[162],"first":[164],"present":[165],"SWDTW":[167],"method":[168,213],"calculate":[170],"similarity,":[172],"used":[175],"evaluate":[177],"Based":[180],"on":[181],"this,":[182],"further":[184],"propose":[185,209],"evaluation":[187],"model":[188],"area.":[199],"Finally,":[200],"generalized":[203],"greedy":[204],"simulated":[206],"annealing,":[207],"named":[214],"WRGSA,":[215],"target":[217],"selecting":[221],"areas":[226],"enhance":[228],"accuracy.":[231],"Extensive":[232],"experiments":[233],"have":[234],"been":[235],"conducted":[236],"over":[237],"three":[238],"real-world":[239],"datasets":[240],"types,":[244],"can":[246],"verify":[247],"effectiveness":[249],"our":[251],"proposed":[252],"methods.":[253]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385329458","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-11-05T08:22:29.967993","created_date":"2023-07-29"}