iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/IWMN.2011.6088483
{"id":"https://openalex.org/W2076273819","doi":"https://doi.org/10.1109/iwmn.2011.6088483","title":"Spectrum sensing and vector signal analysis preprocessing based on compressed sampling","display_name":"Spectrum sensing and vector signal analysis preprocessing based on compressed sampling","publication_year":2011,"publication_date":"2011-10-01","ids":{"openalex":"https://openalex.org/W2076273819","doi":"https://doi.org/10.1109/iwmn.2011.6088483","mag":"2076273819"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwmn.2011.6088483","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008004705","display_name":"Guglielmo Frigo","orcid":"https://orcid.org/0000-0002-5762-4354"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"education","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Guglielmo Frigo","raw_affiliation_strings":["Department of Information Engineering, University of Padova, via G. Gradenigo 6/b, I-35131, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, via G. Gradenigo 6/b, I-35131, Italy","institution_ids":["https://openalex.org/I138689650"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5066241074","display_name":"Claudio Narduzzi","orcid":"https://orcid.org/0000-0002-9021-2693"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"education","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Claudio Narduzzi","raw_affiliation_strings":["Department of Information Engineering, University of Padova, via G. Gradenigo 6/b, I-35131, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Padova, via G. Gradenigo 6/b, I-35131, Italy","institution_ids":["https://openalex.org/I138689650"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.346,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.58707,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"37","last_page":"41"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10323","display_name":"Analog Circuit Design for Biomedical Applications","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.6552621},{"id":"https://openalex.org/keywords/compressed-sensing","display_name":"Compressed Sensing","score":0.654055},{"id":"https://openalex.org/keywords/sparsity-in-signal-processing","display_name":"Sparsity in Signal Processing","score":0.574757},{"id":"https://openalex.org/keywords/signal-decomposition","display_name":"Signal Decomposition","score":0.546989},{"id":"https://openalex.org/keywords/signal-reconstruction","display_name":"Signal reconstruction","score":0.52199066},{"id":"https://openalex.org/keywords/sparse-approximation","display_name":"Sparse Approximation","score":0.507215}],"concepts":[{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.7777665},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.7211859},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71520376},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.6552621},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.63599706},{"id":"https://openalex.org/C70958404","wikidata":"https://www.wikidata.org/wiki/Q7512728","display_name":"Signal reconstruction","level":4,"score":0.52199066},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.5185724},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.42939454},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37633523},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3358425},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.2764717},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.124494225},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwmn.2011.6088483","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.44,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1965224799","https://openalex.org/W2119667497","https://openalex.org/W2123629701","https://openalex.org/W2130998683","https://openalex.org/W2145160699","https://openalex.org/W2149213383","https://openalex.org/W2153609494","https://openalex.org/W2610471112"],"related_works":["https://openalex.org/W4285251805","https://openalex.org/W4206981968","https://openalex.org/W3104324607","https://openalex.org/W2601968125","https://openalex.org/W2379468505","https://openalex.org/W2378166785","https://openalex.org/W2308961925","https://openalex.org/W2156466545","https://openalex.org/W2102910599","https://openalex.org/W1987102304"],"abstract_inverted_index":{"This":[0],"paper":[1,126],"investigates":[2],"the":[3,43,69,85,111,125],"application":[4,70],"of":[5,22,39,45,71,87,140],"a":[6,12,28,33,72,91,106,129,138],"compressed":[7],"sampling":[8,26],"(CS)":[9],"algorithm":[10,74,131],"as":[11],"spectrum":[13,76],"sensing":[14,77,145],"and":[15,78,97],"signal":[16,58,63,108,141],"analysis":[17,80],"preprocessor":[18],"for":[19,61,101],"vector":[20,107],"measurements":[21],"digital":[23],"modulations.":[24],"Compressed":[25],"is":[27],"paradigm":[29],"which":[30],"exploits":[31],"sparsity,":[32],"feature":[34],"common":[35],"to":[36,41,52,75],"several":[37,94],"signals":[38,86],"interest,":[40],"allow":[42],"design":[44],"efficient":[46],"data":[47],"acquisition":[48],"schemes.":[49],"These":[50],"need":[51],"be":[53],"followed":[54],"by":[55],"more":[56,120],"complex":[57],"processing":[59],"algorithms":[60],"accurate":[62],"reconstruction.":[64],"The":[65],"discussion":[66],"focuses":[67],"on":[68],"CS":[73,130],"modulation":[79],"in":[81,124],"wireless":[82],"communications.":[83],"When":[84],"interest":[88],"occupy":[89],"only":[90,100],"few":[92],"among":[93],"possible":[95],"bands,":[96],"do":[98],"so":[99],"short":[102],"time":[103],"bursts,":[104],"feeding":[105],"analyser":[109],"with":[110],"required":[112],"preliminary":[113],"information":[114,136],"becomes":[115],"increasingly":[116],"important,":[117],"but":[118],"also":[119],"challenging.":[121],"Results":[122],"presented":[123],"show":[127],"that":[128],"can":[132],"successfully":[133],"extract":[134],"such":[135],"from":[137],"record":[139],"samples,":[142],"providing":[143],"spectrum-blind":[144],"capabilities.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2076273819","counts_by_year":[{"year":2016,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-10-13T14:23:55.283379","created_date":"2016-06-24"}