{"id":"https://openalex.org/W2075834353","doi":"https://doi.org/10.1109/ita.2012.6181779","title":"Optimality of coincidence-based goodness of fit test for sparse sample problems","display_name":"Optimality of coincidence-based goodness of fit test for sparse sample problems","publication_year":2012,"publication_date":"2012-02-01","ids":{"openalex":"https://openalex.org/W2075834353","doi":"https://doi.org/10.1109/ita.2012.6181779","mag":"2075834353"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ita.2012.6181779","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101493939","display_name":"Dayu Huang","orcid":"https://orcid.org/0000-0003-1275-3512"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dayu Huang","raw_affiliation_strings":["CSL & ECE, University of Illinois at Urbana-Champaign, 1308 West Main Street, 61801, USA"],"affiliations":[{"raw_affiliation_string":"CSL & ECE, University of Illinois at Urbana-Champaign, 1308 West Main Street, 61801, USA","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047988825","display_name":"Sean Meyn","orcid":"https://orcid.org/0000-0002-8558-365X"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sean Meyn","raw_affiliation_strings":["CSL & ECE, University of Illinois at Urbana-Champaign, 1308 West Main Street, 61801, USA"],"affiliations":[{"raw_affiliation_string":"CSL & ECE, University of Illinois at Urbana-Champaign, 1308 West Main Street, 61801, USA","institution_ids":["https://openalex.org/I157725225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.273,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.287226,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"344","last_page":"346"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Active Learning in Machine Learning Research","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Active Learning in Machine Learning Research","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11754","display_name":"Diagnostic Methods for COVID-19 Detection","score":0.9693,"subfield":{"id":"https://openalex.org/subfields/2725","display_name":"Infectious Diseases"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9625,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/goodness-of-fit","display_name":"Goodness of fit","score":0.64640117},{"id":"https://openalex.org/keywords/sparse-approximation","display_name":"Sparse Approximation","score":0.597737},{"id":"https://openalex.org/keywords/sparse-representations","display_name":"Sparse Representations","score":0.550547},{"id":"https://openalex.org/keywords/orthogonal-matching-pursuit","display_name":"Orthogonal Matching Pursuit","score":0.542436},{"id":"https://openalex.org/keywords/sparsity-in-signal-processing","display_name":"Sparsity in Signal Processing","score":0.537569},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.5046},{"id":"https://openalex.org/keywords/exponent","display_name":"Exponent","score":0.4352392}],"concepts":[{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.6506082},{"id":"https://openalex.org/C132480984","wikidata":"https://www.wikidata.org/wiki/Q2034239","display_name":"Goodness of fit","level":2,"score":0.64640117},{"id":"https://openalex.org/C2779832538","wikidata":"https://www.wikidata.org/wiki/Q2308809","display_name":"Coincidence","level":3,"score":0.624561},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6091995},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.58694696},{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.5079742},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.45196965},{"id":"https://openalex.org/C2780388253","wikidata":"https://www.wikidata.org/wiki/Q5421508","display_name":"Exponent","level":2,"score":0.4352392},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.42083782},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36626914},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.14944577},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C204787440","wikidata":"https://www.wikidata.org/wiki/Q188504","display_name":"Alternative medicine","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ita.2012.6181779","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W2021553591","https://openalex.org/W2090887848","https://openalex.org/W2104648144","https://openalex.org/W2114735121"],"related_works":["https://openalex.org/W4389454697","https://openalex.org/W3033220593","https://openalex.org/W3029319512","https://openalex.org/W2138100553","https://openalex.org/W2119125991","https://openalex.org/W2091776653","https://openalex.org/W2070733898","https://openalex.org/W2007743448","https://openalex.org/W1990560562","https://openalex.org/W1014021808"],"abstract_inverted_index":{"We":[0],"consider":[1],"the":[2,10,18,21,37,42,61,98,106,115,118,133,139],"sparse":[3],"sample":[4],"goodness":[5],"of":[6,12,20,39,65,121,125],"fit":[7],"problem,":[8],"where":[9],"number":[11],"samples":[13],"n":[14,48,55],"is":[15,67,93,142],"smaller":[16],"than":[17],"size":[19],"alphabet":[22],"m.":[23],"The":[24],"generalized":[25,122],"error":[26,66,123],"exponent":[27],"based":[28],"on":[29,89],"large":[30],"deviation":[31],"analysis":[32],"was":[33],"proposed":[34],"to":[35,52,69],"characterize":[36],"performance":[38],"tests,":[40],"using":[41],"high-dimensional":[43],"model":[44],"in":[45],"which":[46,113],"both":[47],"and":[49,54,86,128],"m":[50],"tend":[51],"infinity":[53],"=":[56,76],"o(m).":[57],"In":[58,101],"previous":[59],"work,":[60],"best":[62],"achievable":[63],"probability":[64],"shown":[68],"decay":[70],"-log(P":[71],"