{"id":"https://openalex.org/W4312312779","doi":"https://doi.org/10.1109/isvlsi54635.2022.00093","title":"A New Hardware-Efficient VLSI-Architecture of GoogLeNet CNN-Model Based Hardware Accelerator for Edge Computing Applications","display_name":"A New Hardware-Efficient VLSI-Architecture of GoogLeNet CNN-Model Based Hardware Accelerator for Edge Computing Applications","publication_year":2022,"publication_date":"2022-07-01","ids":{"openalex":"https://openalex.org/W4312312779","doi":"https://doi.org/10.1109/isvlsi54635.2022.00093"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isvlsi54635.2022.00093","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039039105","display_name":"Md. Najrul Islam","orcid":"https://orcid.org/0000-0003-0601-5994"},"institutions":[{"id":"https://openalex.org/I9579091","display_name":"Indian Institute of Technology Mandi","ror":"https://ror.org/05r9r2f34","country_code":"IN","type":"education","lineage":["https://openalex.org/I9579091"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Md. Najrul Islam","raw_affiliation_strings":["School of Computing and Electrical Engineering, Indian Institute of Technology Mandi"],"affiliations":[{"raw_affiliation_string":"School of Computing and Electrical Engineering, Indian Institute of Technology Mandi","institution_ids":["https://openalex.org/I9579091"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033933825","display_name":"Rahul Shrestha","orcid":"https://orcid.org/0000-0003-2224-0892"},"institutions":[{"id":"https://openalex.org/I9579091","display_name":"Indian Institute of Technology Mandi","ror":"https://ror.org/05r9r2f34","country_code":"IN","type":"education","lineage":["https://openalex.org/I9579091"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rahul Shrestha","raw_affiliation_strings":["School of Computing and Electrical Engineering, Indian Institute of Technology Mandi"],"affiliations":[{"raw_affiliation_string":"School of Computing and Electrical Engineering, Indian Institute of Technology Mandi","institution_ids":["https://openalex.org/I9579091"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056024296","display_name":"Shubhajit Roy Chowdhury","orcid":"https://orcid.org/0000-0003-1878-6657"},"institutions":[{"id":"https://openalex.org/I9579091","display_name":"Indian Institute of Technology Mandi","ror":"https://ror.org/05r9r2f34","country_code":"IN","type":"education","lineage":["https://openalex.org/I9579091"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shubhajit Roy Chowdhury","raw_affiliation_strings":["School of Computing and Electrical Engineering, Indian Institute of Technology Mandi"],"affiliations":[{"raw_affiliation_string":"School of Computing and Electrical Engineering, Indian Institute of Technology Mandi","institution_ids":["https://openalex.org/I9579091"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.725,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.999983,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hardware-acceleration","display_name":"Hardware acceleration","score":0.65980923},{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.5881023},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5610629},{"id":"https://openalex.org/keywords/cellular-neural-network","display_name":"Cellular neural network","score":0.502938},{"id":"https://openalex.org/keywords/edge-device","display_name":"Edge device","score":0.4196015}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75734425},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.74619937},{"id":"https://openalex.org/C14580979","wikidata":"https://www.wikidata.org/wiki/Q876049","display_name":"Very-large-scale integration","level":2,"score":0.7188593},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.696416},{"id":"https://openalex.org/C13164978","wikidata":"https://www.wikidata.org/wiki/Q600158","display_name":"Hardware acceleration","level":3,"score":0.65980923},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.62064743},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.5881023},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.5699901},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5610629},{"id":"https://openalex.org/C812465","wikidata":"https://www.wikidata.org/wiki/Q5058375","display_name":"Cellular neural network","level":3,"score":0.502938},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44833028},{"id":"https://openalex.org/C157764524","wikidata":"https://www.wikidata.org/wiki/Q1383412","display_name":"Throughput","level":3,"score":0.44366163},{"id":"https://openalex.org/C65232700","wikidata":"https://www.wikidata.org/wiki/Q5656403","display_name":"Hardware architecture","level":3,"score":0.4382226},{"id":"https://openalex.org/C138236772","wikidata":"https://www.wikidata.org/wiki/Q25098575","display_name":"Edge device","level":3,"score":0.4196015},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.4174134},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.38603356},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.36908454},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.31554914},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28998062},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.14267084},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.118608415},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.09313926},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isvlsi54635.2022.00093","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.4,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2289252105","https://openalex.org/W2520083297","https://openalex.org/W2616014673","https://openalex.org/W2729080111","https://openalex.org/W2762651727","https://openalex.org/W2794754997","https://openalex.org/W2795915628","https://openalex.org/W2902895686","https://openalex.org/W2913631362","https://openalex.org/W2950656546","https://openalex.org/W2950800384","https://openalex.org/W2979455536"],"related_works":["https://openalex.org/W4361251788","https://openalex.org/W4319662858","https://openalex.org/W4312312779","https://openalex.org/W4308067493","https://openalex.org/W2954307240","https://openalex.org/W2946338335","https://openalex.org/W2904058793","https://openalex.org/W2786216825","https://openalex.org/W2770717529","https://openalex.org/W2524802307"],"abstract_inverted_index":{"In":[0],"the":[1,24,60,137],"current":[2],"trend,":[3],"deep":[4],"neural":[5,30],"network":[6,31],"(DNN)":[7],"models":[8,77],"that":[9,38,83,116,128],"use":[10],"only":[11,118],"one":[12],"type":[13],"of":[14,43,55,69,86,91,100,125],"convolution":[15,92],"filters":[16],"(mostly":[17],"3\u00d73":[18],"convolution)":[19],"are":[20],"widely":[21],"adopted":[22],"for":[23,73],"hardware":[25,71,101,134],"implementation.":[26],"However,":[27],"inception-type":[28],"convolutional":[29],"(CNN)":[32],"model":[33],"such":[34,74],"as":[35],"GoogLeNet":[36,75],"showed":[37],"by":[39],"combining":[40],"different":[41,89],"types":[42,90],"convolutions":[44],"like":[45],"1":[46],"\u00d7":[47],"1,":[48],"3\u00d7":[49],"3,":[50],"7\u00d77":[51],"etc.,":[52],"higher":[53],"level":[54],"accuracy":[56],"is":[57,84],"achievable":[58],"at":[59],"lower":[61],"computational":[62],"cost.":[63],"This":[64,98],"paper":[65],"proposes":[66],"first":[67],"VLSI-architecture":[68],"a":[70,79,123],"accelerator":[72,102,131],"CNN":[76,81],"and":[78,106,121],"versatile":[80],"accelerator-architecture":[82],"capable":[85],"performing":[87],"three":[88],"tasks":[93],"with":[94,112],"approximately":[95],"equal":[96],"hardware-efficiencies.":[97],"design":[99],"has":[103],"been":[104],"synthesized":[105],"implemented":[107],"on":[108],"ZYNQ-102":[109],"Ultra-Scale+":[110],"FPGA-board":[111],"16-bit":[113],"brain-float":[114],"quantization":[115],"consumes":[117],"13.7k":[119],"LUTs":[120],"delivers":[122],"throughput":[124],"13.5":[126],"GFLOPS":[127],"makes":[129],"our":[130],"16.45%":[132],"more":[133],"efficient":[135],"than":[136],"state-of-the-art":[138],"implementations.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312312779","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-09T21:43:54.061356","created_date":"2023-01-04"}