iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ISVLSI.2018.00092
{"id":"https://openalex.org/W2617106563","doi":"https://doi.org/10.1109/isvlsi.2018.00092","title":"MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks","display_name":"MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2617106563","doi":"https://doi.org/10.1109/isvlsi.2018.00092","mag":"2617106563"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isvlsi.2018.00092","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1705.09764","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090122720","display_name":"Chang Song","orcid":"https://orcid.org/0000-0002-1806-792X"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chang Song","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103877341","display_name":"Hsin-Pai Cheng","orcid":null},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hsin-Pai Cheng","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076154259","display_name":"Huanrui Yang","orcid":"https://orcid.org/0000-0002-3384-4512"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huanrui Yang","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100728889","display_name":"Sicheng Li","orcid":"https://orcid.org/0000-0002-5856-1172"},"institutions":[{"id":"https://openalex.org/I1324840837","display_name":"Hewlett-Packard (United States)","ror":"https://ror.org/059rn9488","country_code":"US","type":"company","lineage":["https://openalex.org/I1324840837"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sicheng Li","raw_affiliation_strings":["Hewlett Packard Labs, Palo Alto, CA, USA"],"affiliations":[{"raw_affiliation_string":"Hewlett Packard Labs, Palo Alto, CA, USA","institution_ids":["https://openalex.org/I1324840837"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048629905","display_name":"Chunpeng Wu","orcid":"https://orcid.org/0000-0002-3970-8570"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chunpeng Wu","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048171551","display_name":"Qing Wu","orcid":"https://orcid.org/0000-0001-9320-0332"},"institutions":[{"id":"https://openalex.org/I1280414376","display_name":"United States Air Force Research Laboratory","ror":"https://ror.org/02e2egq70","country_code":"US","type":"facility","lineage":["https://openalex.org/I1280414376","https://openalex.org/I1330347796","https://openalex.org/I4210089612","https://openalex.org/I4210102105","https://openalex.org/I4389425425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qing Wu","raw_affiliation_strings":["Air Force Research Lab, Rome, NY, USA"],"affiliations":[{"raw_affiliation_string":"Air Force Research Lab, Rome, NY, USA","institution_ids":["https://openalex.org/I1280414376"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058073627","display_name":"Yiran Chen","orcid":"https://orcid.org/0000-0002-1486-8412"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yiran Chen","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100429403","display_name":"Hai Li","orcid":"https://orcid.org/0000-0003-3228-6544"},"institutions":[{"id":"https://openalex.org/I170897317","display_name":"Duke University","ror":"https://ror.org/00py81415","country_code":"US","type":"education","lineage":["https://openalex.org/I170897317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hai Li","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA","institution_ids":["https://openalex.org/I170897317"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":21,"citation_normalized_percentile":{"value":0.999901,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"476","last_page":"481"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12122","display_name":"Hardware Security and Authentication Techniques","score":0.9763,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14117","display_name":"Failure Analysis of Integrated Circuits","score":0.9699,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.8215141},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.6849532},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.59970975},{"id":"https://openalex.org/keywords/machine-learning-attacks","display_name":"Machine Learning Attacks","score":0.592489},{"id":"https://openalex.org/keywords/adversarial-examples","display_name":"Adversarial Examples","score":0.59183},{"id":"https://openalex.org/keywords/scan-based-side-channel-attacks","display_name":"Scan-Based Side-Channel Attacks","score":0.516596},{"id":"https://openalex.org/keywords/resilience","display_name":"Resilience (materials science)","score":0.45632625}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.97117555},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.8215141},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7577594},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.6849532},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60978925},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.59970975},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.55503225},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49761775},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47251043},{"id":"https://openalex.org/C2779585090","wikidata":"https://www.wikidata.org/wiki/Q3457762","display_name":"Resilience (materials science)","level":2,"score":0.45632625},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.43569142},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.37511143},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isvlsi.2018.00092","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1705.09764","pdf_url":"https://arxiv.org/pdf/1705.09764","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1705.09764","pdf_url":"https://arxiv.org/pdf/1705.09764","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W1945616565","https://openalex.org/W2133665775","https://openalex.org/W2135957164","https://openalex.org/W2408141691","https://openalex.org/W2468059673","https://openalex.org/W2603766943","https://openalex.org/W2919115771","https://openalex.org/W2963207607","https://openalex.org/W2963389226","https://openalex.org/W2963857521","https://openalex.org/W2964153729","https://openalex.org/W2964294232","https://openalex.org/W4300167250"],"related_works":["https://openalex.org/W4313346231","https://openalex.org/W4298079292","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"Some":[0],"recent":[1],"work":[2],"revealed":[3],"that":[4,33,56,86,121],"deep":[5,130],"neural":[6],"networks":[7],"(DNNs)":[8],"are":[9,18,151],"vulnerable":[10],"to":[11,21,43,47,70,96,108,133],"so-called":[12],"adversarial":[13,35,48,51,58,64,82,89,94,98,134],"attacks":[14,135],"where":[15],"input":[16],"examples":[17,36,91],"intentionally":[19],"perturbed":[20],"fool":[22],"DNNs.":[23],"In":[24],"this":[25],"work,":[26],"we":[27,78],"revisit":[28],"the":[29,38,72,76,88,110,126],"DNN":[30],"training":[31,39,83,90,101,113,145],"process":[32],"includes":[34],"into":[37],"dataset":[40],"so":[41],"as":[42],"improve":[44],"DNN's":[45],"resilience":[46],"attacks,":[49],"namely,":[50],"training.":[52],"Our":[53,118],"experiments":[54],"show":[55,120],"different":[57,67,93],"strengths,":[59],"i.e.,":[60],"perturbation":[61],"levels":[62],"of":[63,129],"examples,":[65],"have":[66],"working":[68],"ranges":[69],"resist":[71],"attacks.":[73,99],"Based":[74],"on":[75,136,155],"observation,":[77],"propose":[79],"a":[80,156],"multi-strength":[81],"method":[84],"(MAT)":[85],"combines":[87],"with":[92],"strengths":[95],"defend":[97],"Two":[100],"structures-mixed":[102],"MAT":[103,122],"and":[104,115,140,148],"parallel":[105],"MAT-are":[106],"developed":[107],"facilitate":[109],"tradeoffs":[111,143],"between":[112,144],"time":[114],"hardware":[116,149],"cost.":[117],"results":[119],"can":[123],"substantially":[124],"minimize":[125],"accuracy":[127],"degradation":[128],"learning":[131],"systems":[132],"MNIST,":[137],"CIFAR-10,":[138],"CIFAR-100,":[139],"SVHN.":[141],"The":[142],"time,":[146],"robustness,":[147],"cost":[150],"also":[152],"well":[153],"discussed":[154],"FPGA":[157],"platform.":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2617106563","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2024-12-03T22:13:51.958096","created_date":"2017-06-05"}