{"id":"https://openalex.org/W2147380217","doi":"https://doi.org/10.1109/isqed.2013.6523609","title":"Low power and compact mixed-mode signal processing hardware using spin-neurons","display_name":"Low power and compact mixed-mode signal processing hardware using spin-neurons","publication_year":2013,"publication_date":"2013-03-01","ids":{"openalex":"https://openalex.org/W2147380217","doi":"https://doi.org/10.1109/isqed.2013.6523609","mag":"2147380217"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isqed.2013.6523609","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019643842","display_name":"Mrigank Sharad","orcid":null},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"M. Sharad","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047916979","display_name":"Deliang Fan","orcid":"https://orcid.org/0000-0002-7989-6297"},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Deliang Fan","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5031161187","display_name":"Kaushik Roy","orcid":"https://orcid.org/0000-0002-0735-9695"},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"K. Roy","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.796479,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"189","last_page":"195"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10323","display_name":"Analog Circuit Design for Biomedical Applications","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cmos-scaling","display_name":"CMOS Scaling","score":0.570209},{"id":"https://openalex.org/keywords/domain-wall-logic","display_name":"Domain-Wall Logic","score":0.507029},{"id":"https://openalex.org/keywords/high-performance-nanoscale-devices","display_name":"High-Performance Nanoscale Devices","score":0.504783},{"id":"https://openalex.org/keywords/mode","display_name":"Mode (computer interface)","score":0.50334877},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.502189}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58240265},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.57881254},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.5713904},{"id":"https://openalex.org/C48677424","wikidata":"https://www.wikidata.org/wiki/Q6888088","display_name":"Mode (computer interface)","level":2,"score":0.50334877},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.46980983},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.36982393},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.32291788},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.32053775},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.260553},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.162626},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.07363802},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isqed.2013.6523609","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.89,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1982050561","https://openalex.org/W1982074655","https://openalex.org/W1983739214","https://openalex.org/W2020443390","https://openalex.org/W2020735288","https://openalex.org/W2030918226","https://openalex.org/W2035115446","https://openalex.org/W2038078811","https://openalex.org/W2039375332","https://openalex.org/W2039940503","https://openalex.org/W2095928257","https://openalex.org/W2095937120","https://openalex.org/W2097988027","https://openalex.org/W2117148079","https://openalex.org/W2118249063","https://openalex.org/W2125010820","https://openalex.org/W2148304983","https://openalex.org/W2148835352","https://openalex.org/W2157952841","https://openalex.org/W2166230011","https://openalex.org/W2578507560","https://openalex.org/W3143740944","https://openalex.org/W4239361655","https://openalex.org/W4299939789"],"related_works":["https://openalex.org/W4235913033","https://openalex.org/W4232397253","https://openalex.org/W4210925376","https://openalex.org/W4210376836","https://openalex.org/W2596211269","https://openalex.org/W2387078853","https://openalex.org/W2360384790","https://openalex.org/W2147481850","https://openalex.org/W2039966832","https://openalex.org/W1633995705"],"abstract_inverted_index":{"CMOS":[0,18,117],"Digital":[1],"signal":[2,73],"processing":[3,14,56,74],"hardware":[4],"are":[5,20,59],"power":[6,23,105,136],"efficient":[7,83],"but":[8,22],"consume":[9],"large":[10],"area,":[11],"whereas,":[12],"analog":[13,55],"units,":[15],"based":[16],"on":[17],"technology":[19,122],"compact,":[21],"hungry.":[24],"Emerging":[25],"magneto-metallic":[26],"spin-torque":[27],"devices":[28,47],"like":[29,38],"domain":[30],"wall":[31,78],"magnets":[32],"can":[33,48,101,130],"however":[34],"perform":[35],"analog-mode":[36,84],"computation":[37,85],"summation":[39],"and":[40,107],"thresholding":[41],"at":[42,119],"ultra":[43],"low":[44,64],"voltage.":[45],"Such":[46],"be":[49,131],"exploited":[50],"in":[51],"designing":[52],"spin-CMOS":[53],"hybrid":[54],"units":[57],"that":[58,80,97],"compact":[60],"as":[61,63,111],"well":[62],"power.":[65],"In":[66,124],"this":[67],"work":[68],"we":[69],"present":[70],"a":[71,99,126],"mixed-mode":[72],"scheme":[75],"employing":[76],"\"domain":[77],"neurons\"":[79],"involves":[81],"energy":[82],"upon":[86,139],"digital":[87,116],"data.":[88],"Simulation":[89],"results":[90],"for":[91,134],"8-bit,":[92],"16-tap":[93],"FIR":[94],"filter":[95],"show":[96],"such":[98,125],"design":[100,118,127],"achieve":[102],"10x":[103],"lower":[104,109],"consumption":[106],"16x":[108],"area":[110,128],"compared":[112],"to":[113],"an":[114],"optimized":[115],"the":[120,140],"same":[121],"node.":[123],"saving":[129],"traded":[132],"off":[133],"enhanced":[135],"savings,":[137],"depending":[138],"target":[141],"application.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2147380217","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2024-10-10T23:29:03.794002","created_date":"2016-06-24"}