iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ISIVC.2018.8709190
{"id":"https://openalex.org/W2944505589","doi":"https://doi.org/10.1109/isivc.2018.8709190","title":"Learning of Finite Two-Dimensional Beta Mixture Models","display_name":"Learning of Finite Two-Dimensional Beta Mixture Models","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2944505589","doi":"https://doi.org/10.1109/isivc.2018.8709190","mag":"2944505589"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isivc.2018.8709190","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091833816","display_name":"Narges Manouchehri","orcid":"https://orcid.org/0000-0002-3011-5162"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"education","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Narges Manouchehri","raw_affiliation_strings":["Concordia University, Montr\u00e9al, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia University, Montr\u00e9al, Canada","institution_ids":["https://openalex.org/I60158472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090600716","display_name":"Nizar Bouguila","orcid":"https://orcid.org/0000-0001-7224-7940"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"education","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Nizar Bouguila","raw_affiliation_strings":["Concordia University, Montr\u00e9al, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia University, Montr\u00e9al, Canada","institution_ids":["https://openalex.org/I60158472"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.164,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.488069,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"227","last_page":"232"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Regularization and Variable Selection Methods","score":0.9636,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mixture-models","display_name":"Mixture Models","score":0.559228},{"id":"https://openalex.org/keywords/finite-mixtures","display_name":"Finite Mixtures","score":0.537439},{"id":"https://openalex.org/keywords/model-selection","display_name":"Model Selection","score":0.524733},{"id":"https://openalex.org/keywords/high-dimensional-data","display_name":"High-Dimensional Data","score":0.512501},{"id":"https://openalex.org/keywords/hidden-markov-models","display_name":"Hidden Markov Models","score":0.506991},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.48819262}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7169029},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.7093612},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.67619467},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.657063},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.511789},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.51157504},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50753725},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.48819262},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45266753},{"id":"https://openalex.org/C64341305","wikidata":"https://www.wikidata.org/wiki/Q4919225","display_name":"Bivariate analysis","level":2,"score":0.43624675},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.43185794},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.4185335},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3813674},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21283984},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.19516367},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.15853012},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11208975},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isivc.2018.8709190","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1498429882","https://openalex.org/W1579271636","https://openalex.org/W1587070286","https://openalex.org/W1601795611","https://openalex.org/W1608175048","https://openalex.org/W1614659291","https://openalex.org/W1968353133","https://openalex.org/W1972305392","https://openalex.org/W1983494083","https://openalex.org/W1991852795","https://openalex.org/W1992419399","https://openalex.org/W1993710936","https://openalex.org/W1996510517","https://openalex.org/W2000930721","https://openalex.org/W2001983900","https://openalex.org/W2007378618","https://openalex.org/W2007819283","https://openalex.org/W2009152144","https://openalex.org/W2011275121","https://openalex.org/W2035893370","https://openalex.org/W2041993031","https://openalex.org/W2049633694","https://openalex.org/W2051071899","https://openalex.org/W2054765427","https://openalex.org/W2059997481","https://openalex.org/W2060556149","https://openalex.org/W2068406209","https://openalex.org/W2082697323","https://openalex.org/W2096370614","https://openalex.org/W2102524069","https://openalex.org/W2107192713","https://openalex.org/W2119053066","https://openalex.org/W2124716447","https://openalex.org/W2133703553","https://openalex.org/W2140617711","https://openalex.org/W2154231035","https://openalex.org/W2162362064","https://openalex.org/W2163008893","https://openalex.org/W2168029185","https://openalex.org/W2169962072","https://openalex.org/W2294098965","https://openalex.org/W2317218532","https://openalex.org/W2488678869","https://openalex.org/W2536231481","https://openalex.org/W4232023503","https://openalex.org/W4255225174"],"related_works":["https://openalex.org/W84255947","https://openalex.org/W805531662","https://openalex.org/W4312864369","https://openalex.org/W3146343978","https://openalex.org/W2891133681","https://openalex.org/W2473373438","https://openalex.org/W2368486525","https://openalex.org/W2153481672","https://openalex.org/W2077224612","https://openalex.org/W2014842417"],"abstract_inverted_index":{"Finite":[0],"mixture":[1],"models":[2],"are":[3,33,49,125],"widely":[4],"applied":[5,110],"in":[6,39,111],"various":[7],"domains":[8],"of":[9,22,61,67,121],"applications.":[10],"They":[11],"assist":[12],"to":[13,85],"analyze":[14],"datasets,":[15],"achieve":[16],"better":[17],"insight":[18],"into":[19],"the":[20,62,122],"nature":[21],"data,":[23],"discover":[24],"latent":[25],"patterns":[26],"and":[27,54,64,114,119,134],"provide":[28],"critical":[29],"knowledge":[30],"that":[31,130],"we":[32,93],"looking":[34],"for.":[35],"The":[36,117],"main":[37,104],"focus":[38],"past":[40],"works":[41],"was":[42],"on":[43],"Gaussian":[44],"statistical":[45,68],"models,":[46],"however":[47],"there":[48],"several":[50],"applications":[51],"involving":[52],"asymmetric":[53],"non-Gaussian":[55],"data.":[56],"Parameter":[57],"estimation":[58],"is":[59],"one":[60],"essential":[63],"fundamental":[65],"challenges":[66],"researches.":[69],"Some":[70],"deterministic":[71],"approaches":[72],"such":[73],"as":[74,82,102],"expectation":[75],"maximization":[76],"(EM)":[77],"have":[78],"been":[79],"mainly":[80],"considered":[81],"effective":[83],"techniques":[84],"deal":[86],"with":[87,99],"this":[88,91],"issue.":[89],"In":[90],"article,":[92],"introduce":[94],"a":[95],"bivariate":[96],"Beta":[97],"distribution":[98,106],"three":[100],"parameters":[101],"our":[103],"parent":[105],"which":[107],"could":[108],"be":[109],"skin":[112],"detection":[113],"image":[115],"segmentation.":[116],"feasibility":[118],"effectiveness":[120],"proposed":[123],"method":[124],"demonstrated":[126],"by":[127],"experimental":[128],"results":[129],"concern":[131],"both":[132],"artificial":[133],"real":[135],"datasets.":[136]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2944505589","counts_by_year":[{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-02T14:30:56.272481","created_date":"2019-05-16"}