iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ISBI.2017.7950712
{"id":"https://openalex.org/W2641516774","doi":"https://doi.org/10.1109/isbi.2017.7950712","title":"Handcrafted features vs ConvNets in 2D echocardiographic images","display_name":"Handcrafted features vs ConvNets in 2D echocardiographic images","publication_year":2017,"publication_date":"2017-04-01","ids":{"openalex":"https://openalex.org/W2641516774","doi":"https://doi.org/10.1109/isbi.2017.7950712","mag":"2641516774"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2017.7950712","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023783632","display_name":"Caroline Raynaud","orcid":null},"institutions":[{"id":"https://openalex.org/I4210165709","display_name":"Philips (France)","ror":"https://ror.org/05jz46060","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210122849","https://openalex.org/I4210165709"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"C. Raynaud","raw_affiliation_strings":["Philips Research Medisys, Paris, France"],"affiliations":[{"raw_affiliation_string":"Philips Research Medisys, Paris, France","institution_ids":["https://openalex.org/I4210165709"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027364593","display_name":"H\u00e9l\u00e8ne Langet","orcid":"https://orcid.org/0000-0002-6758-2397"},"institutions":[{"id":"https://openalex.org/I4210165709","display_name":"Philips (France)","ror":"https://ror.org/05jz46060","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210122849","https://openalex.org/I4210165709"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"H. Langet","raw_affiliation_strings":["Philips Research Medisys, Paris, France"],"affiliations":[{"raw_affiliation_string":"Philips Research Medisys, Paris, France","institution_ids":["https://openalex.org/I4210165709"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012825728","display_name":"Mihaela Amzulescu","orcid":"https://orcid.org/0000-0002-5494-6665"},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"M.S. Amzulescu","raw_affiliation_strings":["Cardiology Department, CHU/Normandy University, Caen, France"],"affiliations":[{"raw_affiliation_string":"Cardiology Department, CHU/Normandy University, Caen, France","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028330203","display_name":"\u00c9ric Saloux","orcid":"https://orcid.org/0000-0002-3817-9961"},"institutions":[{"id":"https://openalex.org/I2802054198","display_name":"Erasmus Hospital","ror":"https://ror.org/05j1gs298","country_code":"BE","type":"healthcare","lineage":["https://openalex.org/I2802054198"]}],"countries":["BE"],"is_corresponding":false,"raw_author_name":"E. Saloux","raw_affiliation_strings":["Division of Cardiology, St. Luc Hospital, Bruxelles, Belgium"],"affiliations":[{"raw_affiliation_string":"Division of Cardiology, St. Luc Hospital, Bruxelles, Belgium","institution_ids":["https://openalex.org/I2802054198"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048724583","display_name":"Hadrien Bertrand","orcid":null},"institutions":[{"id":"https://openalex.org/I4210165709","display_name":"Philips (France)","ror":"https://ror.org/05jz46060","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210122849","https://openalex.org/I4210165709"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"H. Bertrand","raw_affiliation_strings":["Philips Research Medisys, Paris, France"],"affiliations":[{"raw_affiliation_string":"Philips Research Medisys, Paris, France","institution_ids":["https://openalex.org/I4210165709"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080003606","display_name":"Philippe Allain","orcid":"https://orcid.org/0000-0003-0668-0986"},"institutions":[{"id":"https://openalex.org/I4210165709","display_name":"Philips (France)","ror":"https://ror.org/05jz46060","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210122849","https://openalex.org/I4210165709"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"P. Allain","raw_affiliation_strings":["Philips Research Medisys, Paris, France"],"affiliations":[{"raw_affiliation_string":"Philips Research Medisys, Paris, France","institution_ids":["https://openalex.org/I4210165709"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109417990","display_name":"Paolo Piro","orcid":null},"institutions":[{"id":"https://openalex.org/I4210165709","display_name":"Philips (France)","ror":"https://ror.org/05jz46060","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210122849","https://openalex.org/I4210165709"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"P. Piro","raw_affiliation_strings":["Philips Research Medisys, Paris, France"],"affiliations":[{"raw_affiliation_string":"Philips Research Medisys, Paris, France","institution_ids":["https://openalex.org/I4210165709"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.845,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.748977,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"12","issue":null,"first_page":"1116","last_page":"1119"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10172","display_name":"Management of Valvular Heart Disease","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10172","display_name":"Management of Valvular Heart Disease","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Image Segmentation Techniques","score":0.9587,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.521027},{"id":"https://openalex.org/keywords/computer-vision","display_name":"Computer Vision","score":0.504531},{"id":"https://openalex.org/keywords/image-recognition","display_name":"Image Recognition","score":0.50164},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41500837}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8036144},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7519983},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6562158},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.63322866},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4574714},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.44848478},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41500837},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.41267693},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.36814034},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33854148},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32941407}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2017.7950712","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W1946919140","https://openalex.org/W1962010357","https://openalex.org/W2035394647","https://openalex.org/W2084783417","https://openalex.org/W2138583139","https://openalex.org/W2327084999","https://openalex.org/W2722851397"],"related_works":["https://openalex.org/W4360783045","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2952813363","https://openalex.org/W2951211570","https://openalex.org/W1522196789"],"abstract_inverted_index":{"In":[0],"this":[1,23],"paper,":[2],"we":[3,25,47],"address":[4],"the":[5,14,41,72,80,87,97,112],"problem":[6],"of":[7,13,107],"automated":[8],"pose":[9,56],"classification":[10],"and":[11],"segmentation":[12,127],"left":[15],"ventricle":[16],"(LV)":[17],"in":[18],"2D":[19],"echocardiographic":[20],"images.":[21],"For":[22],"purpose,":[24],"compare":[26],"two":[27,113],"complementary":[28],"approaches.":[29],"The":[30,83],"first":[31],"one":[32],"is":[33],"based":[34],"on":[35,103,118,125],"engineering":[36],"ad-hoc":[37],"features":[38,50,99],"according":[39],"to":[40,51,77],"traditional":[42],"machine":[43],"learning":[44,89],"paradigm.":[45],"Namely,":[46],"extract":[48],"phase":[49],"build":[52],"an":[53],"unsupervised":[54],"LV":[55,81,126],"estimator,":[57],"as":[58,60],"well":[59],"a":[61,92,104,129],"global":[62],"image":[63],"descriptor":[64],"for":[65],"view":[66,119],"type":[67],"classification.":[68],"We":[69],"also":[70],"apply":[71],"Supervised":[73],"Descent":[74],"Method":[75],"(SDM)":[76],"iteratively":[78],"refine":[79],"contour.":[82],"second":[84],"approach":[85],"follows":[86],"deep":[88],"framework,":[90],"where":[91],"Convolutional":[93],"Network":[94],"(ConvNet)":[95],"learns":[96],"visual":[98],"automatically.":[100],"Our":[101],"experiments":[102],"large":[105],"database":[106],"apical":[108],"sequences":[109],"show":[110],"that":[111],"approaches":[114],"yield":[115],"comparable":[116],"results":[117],"classification,":[120],"but":[121],"SDM":[122],"outperforms":[123],"ConvNet":[124],"at":[128],"significantly":[130],"lower":[131],"training":[132],"computational":[133],"cost.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2641516774","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":3}],"updated_date":"2024-10-16T14:24:26.630388","created_date":"2017-06-30"}