{"id":"https://openalex.org/W2394539189","doi":"https://doi.org/10.1109/isba.2016.7477247","title":"Selecting discriminative regions for periocular verification","display_name":"Selecting discriminative regions for periocular verification","publication_year":2016,"publication_date":"2016-02-01","ids":{"openalex":"https://openalex.org/W2394539189","doi":"https://doi.org/10.1109/isba.2016.7477247","mag":"2394539189"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isba.2016.7477247","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036239586","display_name":"Jonathon M. Smereka","orcid":"https://orcid.org/0000-0001-9262-1143"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jonathon M. Smereka","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, PA"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, PA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055345322","display_name":"B. V. K. Vijaya Kumar","orcid":"https://orcid.org/0000-0001-7126-6381"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"B. V. K. Vijaya Kumar","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, PA"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, PA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100698619","display_name":"Andr\u00e9s Rodr\u00edguez","orcid":"https://orcid.org/0000-0002-1425-9035"},"institutions":[{"id":"https://openalex.org/I1343180700","display_name":"Intel (United States)","ror":"https://ror.org/01ek73717","country_code":"US","type":"company","lineage":["https://openalex.org/I1343180700"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andres Rodriguez","raw_affiliation_strings":["Intel Corporation, Hillsboro, OR"],"affiliations":[{"raw_affiliation_string":"Intel Corporation, Hillsboro, OR","institution_ids":["https://openalex.org/I1343180700"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.39,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":19,"citation_normalized_percentile":{"value":0.92768,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10828","display_name":"Biometric Recognition and Security Systems","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10828","display_name":"Biometric Recognition and Security Systems","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12549","display_name":"Robust Line and Curve Detection using Hough Transform","score":0.9742,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.84897506},{"id":"https://openalex.org/keywords/edge-detection","display_name":"Edge Detection","score":0.547259},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.546093},{"id":"https://openalex.org/keywords/facial-landmark-detection","display_name":"Facial Landmark Detection","score":0.54435},{"id":"https://openalex.org/keywords/iris-recognition","display_name":"Iris Recognition","score":0.532705},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.531726}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.84897506},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6662752},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4745173},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35251823},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34159923}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isba.2016.7477247","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.74,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1577818474","https://openalex.org/W193981306","https://openalex.org/W1964422708","https://openalex.org/W1965947362","https://openalex.org/W1980732600","https://openalex.org/W1981573817","https://openalex.org/W1983254201","https://openalex.org/W1996988699","https://openalex.org/W1998529975","https://openalex.org/W1999478155","https://openalex.org/W2002170086","https://openalex.org/W2003584106","https://openalex.org/W2006137366","https://openalex.org/W2011404628","https://openalex.org/W2022508996","https://openalex.org/W2024941787","https://openalex.org/W2028277005","https://openalex.org/W202971408","https://openalex.org/W2033291679","https://openalex.org/W2049313567","https://openalex.org/W2056458658","https://openalex.org/W2057961664","https://openalex.org/W2067641655","https://openalex.org/W2072893994","https://openalex.org/W2075322984","https://openalex.org/W2082272942","https://openalex.org/W2084481049","https://openalex.org/W2088714418","https://openalex.org/W2090795098","https://openalex.org/W2093278290","https://openalex.org/W2105714141","https://openalex.org/W2110158442","https://openalex.org/W2113465366","https://openalex.org/W2118246710","https://openalex.org/W2121947440","https://openalex.org/W2137659841","https://openalex.org/W2139710960","https://openalex.org/W2143717153","https://openalex.org/W2150609397","https://openalex.org/W2152690956","https://openalex.org/W2156206822","https://openalex.org/W2161717988","https://openalex.org/W2166590460","https://openalex.org/W2536208356","https://openalex.org/W2542276916","https://openalex.org/W2621419637","https://openalex.org/W2789848387","https://openalex.org/W4205265922","https://openalex.org/W4246406910"],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2404514746","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W1969923398"],"abstract_inverted_index":{"A":[0,97],"fundamental":[1],"step":[2,176],"in":[3,11,57,89,145],"biometric":[4,139],"recognition":[5,38],"is":[6,74,100,107,153,173],"to":[7,13,85,109,155,158],"identify":[8],"discriminative":[9,25,52],"features":[10],"order":[12],"maximize":[14],"user":[15],"separation.":[16],"Matching":[17],"systems":[18],"will":[19],"often":[20],"require":[21],"manually":[22],"choosing":[23],"these":[24,55],"regions":[26,88,104],"of":[27,54,72,119,129],"interest":[28],"for":[29,93],"feature":[30],"extraction":[31],"and/or":[32,45],"score":[33],"fusion.":[34],"Specifically":[35],"within":[36],"periocular":[37,91,98,138],"scenarios,":[39],"previous":[40],"works":[41],"segment":[42],"the":[43,51,90,115,120,127,150],"eyebrow":[44],"eye.":[46],"While":[47],"such":[48],"efforts":[49],"demonstrate":[50,126],"power":[53],"regions,":[56],"this":[58,70,130],"paper":[59],"we":[60,79],"show":[61],"that":[62,169],"there":[63],"are":[64],"various":[65],"scenarios":[66],"where":[67],"blindly":[68],"employing":[69],"type":[71],"segmentation":[73,172],"not":[75],"consistently":[76],"effective.":[77],"Thus,":[78],"introduce":[80],"a":[81],"novel":[82],"unsupervised":[83],"approach":[84,131,152],"automatically":[86],"select":[87],"image":[92,99],"improved":[94],"match":[95],"performance.":[96,182],"segmented":[101],"into":[102],"rectangular":[103],"(this":[105],"process":[106],"referred":[108],"as":[110],"patch":[111,171],"segmentation)":[112],"which":[113,177],"improve":[114],"overall":[116],"discrimination":[117],"ability":[118],"bio-metric":[121],"samples":[122],"being":[123],"matched.":[124],"We":[125],"efficacy":[128],"via":[132],"extensive":[133],"numerical":[134],"results":[135,167],"on":[136,163],"multiple":[137],"databases":[140],"exhibiting":[141],"challenges":[142],"commonly":[143],"found":[144],"uncontrolled":[146],"acquisition":[147],"environments.":[148],"As":[149],"proposed":[151],"shown":[154],"be":[156],"equivalent":[157],"or":[159],"better":[160],"than":[161],"state-of-the-art":[162],"each":[164],"dataset,":[165],"our":[166,170],"indicate":[168],"an":[174],"important":[175],"can":[178],"greatly":[179],"influence":[180],"system":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2394539189","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2024-11-23T06:34:19.525974","created_date":"2016-06-24"}