{"id":"https://openalex.org/W2401865160","doi":"https://doi.org/10.1109/isba.2016.7477231","title":"On motion-sensor behavior analysis for human-activity recognition via smartphones","display_name":"On motion-sensor behavior analysis for human-activity recognition via smartphones","publication_year":2016,"publication_date":"2016-02-01","ids":{"openalex":"https://openalex.org/W2401865160","doi":"https://doi.org/10.1109/isba.2016.7477231","mag":"2401865160"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isba.2016.7477231","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101843177","display_name":"Chao Shen","orcid":"https://orcid.org/0000-0002-6959-0569"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Shen","raw_affiliation_strings":["MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100411559","display_name":"Yufei Chen","orcid":"https://orcid.org/0000-0003-3786-928X"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yufei Chen","raw_affiliation_strings":["MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109394073","display_name":"Gengshan Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gengshan Yang","raw_affiliation_strings":["MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"MOE KLNNIS Lab, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.576,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":35,"citation_normalized_percentile":{"value":0.912081,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.88257754},{"id":"https://openalex.org/keywords/ranging","display_name":"Ranging","score":0.5365614},{"id":"https://openalex.org/keywords/human-motion","display_name":"Human motion","score":0.45231077}],"concepts":[{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.88257754},{"id":"https://openalex.org/C89805583","wikidata":"https://www.wikidata.org/wiki/Q192940","display_name":"Accelerometer","level":2,"score":0.8152361},{"id":"https://openalex.org/C158488048","wikidata":"https://www.wikidata.org/wiki/Q483400","display_name":"Gyroscope","level":2,"score":0.80020607},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6743756},{"id":"https://openalex.org/C79061980","wikidata":"https://www.wikidata.org/wiki/Q941680","display_name":"Inertial measurement unit","level":2,"score":0.64190936},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.615391},{"id":"https://openalex.org/C557433098","wikidata":"https://www.wikidata.org/wiki/Q94","display_name":"Android (operating system)","level":2,"score":0.56961},{"id":"https://openalex.org/C115051666","wikidata":"https://www.wikidata.org/wiki/Q6522493","display_name":"Ranging","level":2,"score":0.5365614},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.5276545},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.5036203},{"id":"https://openalex.org/C2986578859","wikidata":"https://www.wikidata.org/wiki/Q657632","display_name":"Human motion","level":3,"score":0.45231077},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44488695},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.41027418},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18686649},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isba.2016.7477231","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.63,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1986553199","https://openalex.org/W2006233203","https://openalex.org/W2011224697","https://openalex.org/W2052690418","https://openalex.org/W2083539525","https://openalex.org/W2105046342","https://openalex.org/W2127127580","https://openalex.org/W2129793335","https://openalex.org/W2137539192","https://openalex.org/W2140013239","https://openalex.org/W2156779545","https://openalex.org/W2169239892","https://openalex.org/W2293480925","https://openalex.org/W2534335869","https://openalex.org/W2898320034"],"related_works":["https://openalex.org/W4287084017","https://openalex.org/W3208523813","https://openalex.org/W3195533899","https://openalex.org/W3179745820","https://openalex.org/W2594666386","https://openalex.org/W2545638156","https://openalex.org/W2537790823","https://openalex.org/W2359095091","https://openalex.org/W2000754062","https://openalex.org/W1973973903"],"abstract_inverted_index":{"A":[0],"wealth":[1],"of":[2,28,33,53,58,75,103,170,179],"sensors":[3,36,82],"on":[4,134],"smartphones":[5],"has":[6],"greatly":[7],"facilitated":[8],"people's":[9],"life,":[10],"which":[11],"may":[12],"also":[13,166],"provide":[14],"great":[15],"potential":[16],"for":[17,37,98,118,172],"accurate":[18,99],"human":[19,38,47,104,122,140],"activity":[20,39],"recognition.":[21,40],"This":[22],"paper":[23],"presents":[24],"an":[25,63],"empirical":[26],"study":[27],"analyzing":[29],"the":[30,154,157,177,180],"behavioral":[31],"characteristics":[32],"smartphone":[34],"inertial":[35],"The":[41],"rationale":[42],"behind":[43],"is":[44],"that":[45,138],"different":[46,51],"activities":[48,141],"would":[49],"cause":[50],"levels":[52],"posture":[54],"and":[55,86,95,100,115,130],"motion":[56,76,81],"change":[57],"smartphone.":[59],"In":[60],"this":[61,183],"work,":[62],"Android":[64],"application":[65],"was":[66],"run":[67],"as":[68],"a":[69,168],"background":[70],"job":[71],"to":[72,91,110,163,175],"monitor":[73],"data":[74,79],"sensors.":[77],"Sensory":[78],"from":[80,146,161],"(mainly":[83],"including":[84],"accelerometer":[85],"gyroscope":[87],"data)":[88],"were":[89,108],"analyzed":[90],"extracted":[92],"time-,":[93],"frequency-,":[94],"wavelet-domain":[96],"features":[97],"fine-grained":[101],"characterization":[102],"activities.":[105],"Classification":[106],"technique":[107],"applied":[109],"build":[111],"both":[112],"personalized":[113],"model":[114,117],"generalized":[116],"discriminating":[119],"five":[120],"daily":[121],"activities:":[123],"going":[124,126],"downstairs,":[125],"upstairs,":[127],"walking,":[128],"running,":[129],"jumping.":[131],"Analyses":[132],"conducted":[133],"18":[135],"subjects":[136],"showed":[137],"these":[139],"can":[142],"be":[143],"accurately":[144],"recognized":[145],"smartphone-sensor":[147],"behavior,":[148],"with":[149],"recognition":[150],"rates":[151],"expressed":[152],"by":[153],"area":[155],"under":[156],"ROC":[158],"curve":[159],"ranging":[160],"84.97%":[162],"90.65%.":[164],"We":[165],"discuss":[167],"number":[169],"avenues":[171],"additional":[173],"research":[174],"advance":[176],"state":[178],"art":[181],"in":[182],"area.":[184]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2401865160","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":13},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":4}],"updated_date":"2024-12-07T15:33:53.395640","created_date":"2016-06-24"}