{"id":"https://openalex.org/W2002827166","doi":"https://doi.org/10.1109/iros.2012.6386146","title":"Low-power parallel algorithms for single image based obstacle avoidance in aerial robots","display_name":"Low-power parallel algorithms for single image based obstacle avoidance in aerial robots","publication_year":2012,"publication_date":"2012-10-01","ids":{"openalex":"https://openalex.org/W2002827166","doi":"https://doi.org/10.1109/iros.2012.6386146","mag":"2002827166"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2012.6386146","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.cs.cornell.edu/%7Easaxena/papers/lowpower_obstacleavoidance_mav.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089647721","display_name":"Ian Lenz","orcid":null},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ian Lenz","raw_affiliation_strings":["[Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA]"],"affiliations":[{"raw_affiliation_string":"[Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA]","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002437182","display_name":"Mevlana Gemici","orcid":null},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mevlana Gemici","raw_affiliation_strings":["[Department of Electrical and Computer Engineering Cornell University, Ithaca, NY, USA]"],"affiliations":[{"raw_affiliation_string":"[Department of Electrical and Computer Engineering Cornell University, Ithaca, NY, USA]","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081220276","display_name":"Ashutosh Saxena","orcid":"https://orcid.org/0000-0002-6657-2285"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ashutosh Saxena","raw_affiliation_strings":["[Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA]"],"affiliations":[{"raw_affiliation_string":"[Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA]","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.881,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.979984,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"26","issue":null,"first_page":"772","last_page":"779"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Stereo Vision and Depth Estimation","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Stereo Vision and Depth Estimation","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Simultaneous Localization and Mapping","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/obstacle-avoidance","display_name":"Obstacle avoidance","score":0.72281444},{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.67281973},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.529934},{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.522756},{"id":"https://openalex.org/keywords/object-recognition","display_name":"Object Recognition","score":0.509581},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.500609}],"concepts":[{"id":"https://openalex.org/C2776650193","wikidata":"https://www.wikidata.org/wiki/Q264661","display_name":"Obstacle","level":2,"score":0.7655699},{"id":"https://openalex.org/C6683253","wikidata":"https://www.wikidata.org/wiki/Q7075535","display_name":"Obstacle avoidance","level":4,"score":0.72281444},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70972735},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.7063618},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6927563},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.67281973},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6274591},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.48514256},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.48259747},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.43441796},{"id":"https://openalex.org/C19966478","wikidata":"https://www.wikidata.org/wiki/Q4810574","display_name":"Mobile robot","level":3,"score":0.24501073},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.16358241},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2012.6386146","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.260.1366","pdf_url":"http://www.cs.cornell.edu/%7Easaxena/papers/lowpower_obstacleavoidance_mav.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.260.1366","pdf_url":"http://www.cs.cornell.edu/%7Easaxena/papers/lowpower_obstacleavoidance_mav.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1560512119","https://openalex.org/W1968353223","https://openalex.org/W1982318371","https://openalex.org/W1985797324","https://openalex.org/W2043958835","https://openalex.org/W2047374839","https://openalex.org/W2064467122","https://openalex.org/W2098800028","https://openalex.org/W2100273172","https://openalex.org/W2102832789","https://openalex.org/W2104154890","https://openalex.org/W2106789842","https://openalex.org/W2108827720","https://openalex.org/W2114249141","https://openalex.org/W2118399598","https://openalex.org/W2118867839","https://openalex.org/W2124189704","https://openalex.org/W2132142950","https://openalex.org/W2132169253","https://openalex.org/W2132400125","https://openalex.org/W2132947399","https://openalex.org/W2135525996","https://openalex.org/W2139905387","https://openalex.org/W2142424817","https://openalex.org/W2143075689","https://openalex.org/W2143617397","https://openalex.org/W2148603752","https://openalex.org/W2154444440","https://openalex.org/W2155377787","https://openalex.org/W2155487235","https://openalex.org/W2157685395","https://openalex.org/W2158211626","https://openalex.org/W2161723234","https://openalex.org/W2162029547","https://openalex.org/W2166711818","https://openalex.org/W2166747022","https://openalex.org/W2170093984","https://openalex.org/W2399880942","https://openalex.org/W3147043586"],"related_works":["https://openalex.org/W4391249562","https://openalex.org/W4253519380","https://openalex.org/W3043170174","https://openalex.org/W2930076404","https://openalex.org/W2782776446","https://openalex.org/W2596413128","https://openalex.org/W2357323510","https://openalex.org/W2356867392","https://openalex.org/W2155948905","https://openalex.org/W2071957557"],"abstract_inverted_index":{"For":[0],"an":[1,42],"aerial":[2],"robot,":[3],"perceiving":[4],"and":[5,37,63,91,133],"avoiding":[6],"obstacles":[7,56],"are":[8,86],"necessary":[9],"skills":[10],"to":[11,40,112,123],"function":[12,59],"autonomously":[13],"in":[14,66,94],"a":[15,24,47,58,125],"cluttered":[16],"unknown":[17],"environment.":[18],"In":[19,104],"this":[20],"work,":[21],"we":[22],"use":[23,38],"single":[25],"image":[26],"captured":[27],"from":[28],"the":[29,55,70],"onboard":[30],"camera":[31],"as":[32,57],"input,":[33],"produce":[34,114],"obstacle":[35,117],"classifications,":[36],"them":[39],"select":[41],"evasive":[43],"maneuver.":[44],"We":[45,72],"present":[46],"Markov":[48],"Random":[49],"Field":[50],"based":[51],"approach":[52],"that":[53],"models":[54],"of":[60,69,102,128],"visual":[61],"features":[62],"non-local":[64],"dependencies":[65],"neighboring":[67],"regions":[68],"image.":[71],"perform":[73],"efficient":[74],"inference":[75],"using":[76,88],"new":[77],"low-power":[78],"parallel":[79],"neuromorphic":[80],"hardware,":[81],"where":[82],"belief":[83],"propagation":[84],"updates":[85],"done":[87],"leaky":[89],"integrate":[90],"fire":[92],"neurons":[93],"parallel,":[95],"while":[96],"consuming":[97],"less":[98],"than":[99],"1":[100],"W":[101],"power.":[103],"outdoor":[105],"robotic":[106],"experiments,":[107],"our":[108,121],"algorithm":[109],"was":[110],"able":[111],"consistently":[113],"clean,":[115],"accurate":[116],"maps":[118],"which":[119],"allowed":[120],"robot":[122],"avoid":[124],"wide":[126],"variety":[127],"obstacles,":[129],"including":[130],"trees,":[131],"poles":[132],"fences.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2002827166","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":3},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-10-03T09:21:51.435164","created_date":"2016-06-24"}