{"id":"https://openalex.org/W1970460654","doi":"https://doi.org/10.1109/ijcnn.2014.6889653","title":"A kernel k-means clustering algorithm based on an adaptive Mahalanobis kernel","display_name":"A kernel k-means clustering algorithm based on an adaptive Mahalanobis kernel","publication_year":2014,"publication_date":"2014-07-01","ids":{"openalex":"https://openalex.org/W1970460654","doi":"https://doi.org/10.1109/ijcnn.2014.6889653","mag":"1970460654"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2014.6889653","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025429430","display_name":"Marcelo R.P. Ferreira","orcid":"https://orcid.org/0000-0003-0242-0255"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marcelo R. P. Ferreira","raw_affiliation_strings":["Dept. of Stat., Fed. Univ. of Paraiba, Joao Pessoa, Brazil"],"affiliations":[{"raw_affiliation_string":"Dept. of Stat., Fed. Univ. of Paraiba, Joao Pessoa, Brazil","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5079004987","display_name":"Francisco de A.T. de Carvalho","orcid":"https://orcid.org/0000-0003-1128-745X"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Francisco de A. T. de Carvalho","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil","institution_ids":["https://openalex.org/I71437568"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.7766615},{"id":"https://openalex.org/keywords/mahalanobis-distance","display_name":"Mahalanobis distance","score":0.77372634},{"id":"https://openalex.org/keywords/k-means","display_name":"K-means","score":0.526001},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5060145}],"concepts":[{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.7766615},{"id":"https://openalex.org/C1921717","wikidata":"https://www.wikidata.org/wiki/Q1334846","display_name":"Mahalanobis distance","level":2,"score":0.77372634},{"id":"https://openalex.org/C195699287","wikidata":"https://www.wikidata.org/wiki/Q7915722","display_name":"Variable kernel density estimation","level":4,"score":0.66794497},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.58286256},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5531614},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.53785455},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5060145},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.48374104},{"id":"https://openalex.org/C182335926","wikidata":"https://www.wikidata.org/wiki/Q17093020","display_name":"Kernel principal component analysis","level":4,"score":0.46691445},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42234105},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4172868},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.40388507},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.08768958},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.07169819},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2014.6889653","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1527731813","https://openalex.org/W1547527303","https://openalex.org/W1549152550","https://openalex.org/W1594031697","https://openalex.org/W1785701360","https://openalex.org/W1941358455","https://openalex.org/W1971853424","https://openalex.org/W1985702987","https://openalex.org/W1986007546","https://openalex.org/W1990517717","https://openalex.org/W1992419399","https://openalex.org/W2007042673","https://openalex.org/W2011430131","https://openalex.org/W2014158063","https://openalex.org/W2018861434","https://openalex.org/W2033193574","https://openalex.org/W2056766567","https://openalex.org/W2058915639","https://openalex.org/W2093771778","https://openalex.org/W2108859253","https://openalex.org/W2108995755","https://openalex.org/W2113076747","https://openalex.org/W2115741375","https://openalex.org/W2116758157","https://openalex.org/W2120166371","https://openalex.org/W2125687218","https://openalex.org/W2140095548","https://openalex.org/W2144222773","https://openalex.org/W2147911985","https://openalex.org/W2153233077","https://openalex.org/W2155074104","https://openalex.org/W2166322089","https://openalex.org/W2397383766","https://openalex.org/W3120740533","https://openalex.org/W4233287056","https://openalex.org/W4235169531","https://openalex.org/W65738273"],"related_works":["https://openalex.org/W2512565647","https://openalex.org/W2398887903","https://openalex.org/W2393746448","https://openalex.org/W2164869055","https://openalex.org/W2127229869","https://openalex.org/W2106786767","https://openalex.org/W2071590642","https://openalex.org/W1984421104","https://openalex.org/W1603091392","https://openalex.org/W1552109592"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,27],"kernel":[4,12,16],"k-means":[5],"algorithm":[6,36,59],"based":[7,19],"on":[8,20],"an":[9,21],"adaptive":[10,22],"Mahalanobis":[11],"is":[13,17,60],"proposed.":[14],"This":[15],"built":[18],"quadratic":[23],"distance":[24],"defined":[25],"by":[26],"symmetric":[28],"positive":[29],"definite":[30],"matrix":[31],"that":[32],"changes":[33],"at":[34],"each":[35],"iteration":[37],"and":[38,66],"takes":[39],"into":[40],"account":[41],"the":[42,47,57],"correlations":[43],"between":[44],"variables,":[45],"allowing":[46],"discovery":[48],"of":[49,56],"clusters":[50],"with":[51,64],"non-hyperspherical":[52],"shapes.":[53],"The":[54],"effectiveness":[55],"proposed":[58],"demonstrated":[61],"through":[62],"experiments":[63],"synthetic":[65],"benchmark":[67],"datasets.":[68]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1970460654","counts_by_year":[],"updated_date":"2024-11-23T20:02:24.224506","created_date":"2016-06-24"}