iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/IDEAS.2006.34
{"id":"https://openalex.org/W2110669103","doi":"https://doi.org/10.1109/ideas.2006.34","title":"PAID: Mining Sequential Patterns by Passed Item Deduction in Large Databases","display_name":"PAID: Mining Sequential Patterns by Passed Item Deduction in Large Databases","publication_year":2006,"publication_date":"2006-12-01","ids":{"openalex":"https://openalex.org/W2110669103","doi":"https://doi.org/10.1109/ideas.2006.34","mag":"2110669103"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ideas.2006.34","pdf_url":null,"source":{"id":"https://openalex.org/S4210202518","display_name":"Proceedings - International Database Engineering and Applications Symposium","issn_l":"1098-8068","issn":["1098-8068"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013188461","display_name":"Zhenglu Yang","orcid":"https://orcid.org/0000-0001-9528-965X"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Zhenglu Yang","raw_affiliation_strings":["university of Tokyo;"],"affiliations":[{"raw_affiliation_string":"university of Tokyo;","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056438865","display_name":"Masaru Kitsuregawa","orcid":"https://orcid.org/0000-0003-4027-2994"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masaru Kitsuregawa","raw_affiliation_strings":["university of Tokyo;"],"affiliations":[{"raw_affiliation_string":"university of Tokyo;","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100650009","display_name":"Yitong Wang","orcid":"https://orcid.org/0000-0002-7559-4152"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yitong Wang","raw_affiliation_strings":["Fudan University"],"affiliations":[{"raw_affiliation_string":"Fudan University","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.924491,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"113","last_page":"120"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9715,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9708,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequential-pattern-mining","display_name":"Sequential Pattern Mining","score":0.69829285},{"id":"https://openalex.org/keywords/scratch","display_name":"Scratch","score":0.5086225}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7749064},{"id":"https://openalex.org/C149490388","wikidata":"https://www.wikidata.org/wiki/Q1718507","display_name":"Sequential Pattern Mining","level":2,"score":0.69829285},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6421774},{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.579154},{"id":"https://openalex.org/C2781235140","wikidata":"https://www.wikidata.org/wiki/Q275131","display_name":"Scratch","level":2,"score":0.5086225},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4629828},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.40408668},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31012487},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ideas.2006.34","pdf_url":null,"source":{"id":"https://openalex.org/S4210202518","display_name":"Proceedings - International Database Engineering and Applications Symposium","issn_l":"1098-8068","issn":["1098-8068"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1484413656","https://openalex.org/W1546482236","https://openalex.org/W1548986531","https://openalex.org/W1562487176","https://openalex.org/W1587322954","https://openalex.org/W1608194207","https://openalex.org/W1641039719","https://openalex.org/W1676985236","https://openalex.org/W192939036","https://openalex.org/W2033534831","https://openalex.org/W2068383400","https://openalex.org/W20722260","https://openalex.org/W2121544039","https://openalex.org/W2126310301","https://openalex.org/W2140937627","https://openalex.org/W2158454296","https://openalex.org/W2168196587","https://openalex.org/W3162432898","https://openalex.org/W325970","https://openalex.org/W4254829975","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W322691623","https://openalex.org/W2770018148","https://openalex.org/W2509444723","https://openalex.org/W2494989134","https://openalex.org/W2475116013","https://openalex.org/W2385135707","https://openalex.org/W2358308169","https://openalex.org/W2140315382","https://openalex.org/W2059109728","https://openalex.org/W2004958254"],"abstract_inverted_index":{"Sequential":[0],"pattern":[1,49,75],"mining":[2,20,50,76,144],"is":[3,8,21,56,103],"very":[4],"important":[5],"because":[6],"it":[7],"the":[9,19,25,29,32,36,85,100,108,123,139,157],"basis":[10],"of":[11,28,35,45,122,128],"many":[12],"applications.":[13],"Yet":[14],"how":[15],"to":[16,24],"efficiently":[17,82],"implement":[18],"difficult":[22],"due":[23],"inherent":[26],"characteristic":[27],"problem":[30],"-":[31],"large":[33,91,164],"size":[34],"dataset.":[37],"Although":[38],"there":[39],"has":[40],"been":[41],"a":[42,67,90],"great":[43],"deal":[44],"effort":[46],"on":[47,132,163],"sequential":[48,74,87,145],"in":[51,111,116,143],"recent":[52],"years,":[53],"its":[54],"performance":[55,151],"still":[57],"far":[58],"from":[59,89,114],"satisfactory.":[60],"In":[61],"this":[62],"paper,":[63],"we":[64],"have":[65],"proposed":[66],"new":[68],"algorithm":[69],"called":[70],"passed":[71],"item":[72],"deduced":[73],"(abbreviated":[77],"as":[78],"PAID),":[79],"which":[80,136],"can":[81,137],"get":[83],"all":[84],"frequent":[86,130],"patterns":[88,131],"database.":[92],"The":[93],"main":[94],"difference":[95],"between":[96],"our":[97],"strategy":[98],"and":[99,150],"existing":[101],"works":[102,159],"that":[104,154],"other":[105],"algorithms":[106],"accumulate":[107],"candidate":[109],"support":[110],"each":[112],"iteration":[113],"scratch,":[115],"contrast,":[117],"PAID":[118,155],"makes":[119],"good":[120],"use":[121],"temporary":[124],"results":[125,149],"(support":[126],"value)":[127],"k-length":[129],"discovering":[133],"(k+1)-length":[134],"patterns,":[135],"reduce":[138],"search":[140],"space":[141],"greatly":[142],"patterns.":[146],"Our":[147],"experimental":[148],"studies":[152],"show":[153],"outperforms":[156],"previous":[158],"by":[160],"meaningful":[161],"margins":[162],"datasets":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2110669103","counts_by_year":[{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-12T11:23:52.598196","created_date":"2016-06-24"}