{"id":"https://openalex.org/W2903811917","doi":"https://doi.org/10.1109/ictai.2018.00151","title":"Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery","display_name":"Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2903811917","doi":"https://doi.org/10.1109/ictai.2018.00151","mag":"2903811917"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2018.00151","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014537056","display_name":"Hengyang Lu","orcid":"https://orcid.org/0000-0001-5321-705X"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"education","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Heng-Yang Lu","raw_affiliation_strings":["Department of Computer Science and Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022486916","display_name":"Gao-Jian Ge","orcid":null},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"education","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gao-Jian Ge","raw_affiliation_strings":["Department of Computer Science and Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057838181","display_name":"Yun Li","orcid":"https://orcid.org/0000-0003-4442-3825"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"education","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yun Li","raw_affiliation_strings":["Department of Computer Science and Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044733681","display_name":"Chongjun Wang","orcid":"https://orcid.org/0000-0002-2628-7033"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"education","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chong-Jun Wang","raw_affiliation_strings":["Department of Computer Science and Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112250453","display_name":"Junyuan Xie","orcid":null},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"education","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun-Yuan Xie","raw_affiliation_strings":["Department of Computer Science and Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.123,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.497933,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.604112},{"id":"https://openalex.org/keywords/semantic-similarity","display_name":"Semantic Similarity","score":0.569404},{"id":"https://openalex.org/keywords/word-representation","display_name":"Word Representation","score":0.539172},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5260551},{"id":"https://openalex.org/keywords/textual-data","display_name":"Textual Data","score":0.505105},{"id":"https://openalex.org/keywords/multi-label-learning","display_name":"Multi-label Learning","score":0.501061}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85283566},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.6876226},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.63670087},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.55568624},{"id":"https://openalex.org/C130318100","wikidata":"https://www.wikidata.org/wiki/Q2268914","display_name":"Semantic similarity","level":2,"score":0.5302524},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5260551},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.51924086},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50813437},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.4587633},{"id":"https://openalex.org/C110875604","wikidata":"https://www.wikidata.org/wiki/Q75","display_name":"The Internet","level":2,"score":0.44794583},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.25641376},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.109131634},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2018.00151","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.72,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1498436455","https://openalex.org/W1608334810","https://openalex.org/W1714665356","https://openalex.org/W179875071","https://openalex.org/W1880262756","https://openalex.org/W1979185006","https://openalex.org/W2061922307","https://openalex.org/W2063904635","https://openalex.org/W2064772995","https://openalex.org/W2076219102","https://openalex.org/W2100163972","https://openalex.org/W2107743791","https://openalex.org/W2130339025","https://openalex.org/W2135790056","https://openalex.org/W2139317750","https://openalex.org/W2153579005","https://openalex.org/W2168332560","https://openalex.org/W2178725228","https://openalex.org/W2238728730","https://openalex.org/W2250861254","https://openalex.org/W2251803266","https://openalex.org/W2269075722","https://openalex.org/W2294875610","https://openalex.org/W2516537890","https://openalex.org/W2573319818","https://openalex.org/W2605183993","https://openalex.org/W2613589950","https://openalex.org/W2745475103","https://openalex.org/W3120740533","https://openalex.org/W4231510805","https://openalex.org/W4233135949","https://openalex.org/W4244872530","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2516873349","https://openalex.org/W2380654781","https://openalex.org/W2176214140","https://openalex.org/W2114797768","https://openalex.org/W1990601549","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"The":[0],"demand":[1],"for":[2,143],"mining":[3],"massive":[4],"short-text":[5],"data":[6,33],"from":[7,101],"the":[8,23,44,83,102,121],"Internet":[9],"has":[10,55],"promoted":[11],"researches":[12],"on":[13,32,51,131],"topic":[14,141],"models.":[15],"There":[16],"exist":[17],"many":[18],"schemes":[19],"trying":[20],"to":[21,95,105,123,139],"solve":[22],"sparsity":[24],"problems":[25],"brought":[26],"by":[27,82],"short":[28,144],"texts,":[29],"mainly":[30],"based":[31],"aggregation":[34],"or":[35],"model":[36,113,124],"improvement.":[37],"Among":[38],"them,":[39],"Biterm":[40],"Topic":[41],"Model":[42],"changes":[43],"way":[45],"of":[46,86,119],"modeling":[47],"topics,":[48],"which":[49,72,116],"is":[50],"document-level":[52],"biterms":[53,77],"and":[54,58,67,126,134],"shown":[56],"creativity":[57],"effectiveness.":[59],"However,":[60],"this":[61,79,112],"may":[62],"ignore":[63],"those":[64],"semantically":[65,97],"similar":[66,98],"rarely":[68],"co-occurrent":[69],"word":[70,87,93,99,127],"pairs,":[71],"are":[73,137],"denoted":[74],"as":[75,114],"global":[76],"in":[78,89],"paper.":[80],"Inspired":[81],"successful":[84],"application":[85],"embeddings":[88,94],"GPU-DMM,":[90],"we":[91],"exploit":[92],"extract":[96],"pairs":[100],"whole":[103],"corpus":[104],"help":[106],"discover":[107],"better":[108],"topics.":[109],"We":[110],"call":[111],"GloSS,":[115],"takes":[117],"advantages":[118],"both":[120],"approach":[122],"topics":[125],"embeddings.":[128],"Experimental":[129],"results":[130],"two":[132],"open-source":[133],"real":[135],"datasets":[136],"superior":[138],"state-of-the-art":[140],"models":[142],"texts.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2903811917","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-28T08:18:27.480643","created_date":"2018-12-22"}