{"id":"https://openalex.org/W2904311070","doi":"https://doi.org/10.1109/ictai.2018.00102","title":"Detection of Shilling Attack Based on Bayesian Model and User Embedding","display_name":"Detection of Shilling Attack Based on Bayesian Model and User Embedding","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2904311070","doi":"https://doi.org/10.1109/ictai.2018.00102","mag":"2904311070"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2018.00102","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077651830","display_name":"Fan Yang","orcid":"https://orcid.org/0000-0002-0254-9000"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Yang","raw_affiliation_strings":["Chongqing University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing University, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002210013","display_name":"Min Gao","orcid":"https://orcid.org/0000-0003-0127-7477"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Min Gao","raw_affiliation_strings":["Chongqing University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing University, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084564297","display_name":"Junliang Yu","orcid":"https://orcid.org/0000-0003-3401-9829"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junliang Yu","raw_affiliation_strings":["Chongqing University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing University, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039446470","display_name":"Yuqi Song","orcid":"https://orcid.org/0009-0000-8148-9212"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuqi Song","raw_affiliation_strings":["Chongqing University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing University, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100382959","display_name":"Xinyi Wang","orcid":"https://orcid.org/0000-0003-1585-1724"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"education","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinyi Wang","raw_affiliation_strings":["Chongqing University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"Chongqing University, Chongqing, China","institution_ids":["https://openalex.org/I158842170"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.062,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":12,"citation_normalized_percentile":{"value":0.797953,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":"9","issue":null,"first_page":"639","last_page":"646"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Detection and Prevention of Phishing Attacks","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/movielens","display_name":"MovieLens","score":0.7228347},{"id":"https://openalex.org/keywords/information-overload","display_name":"Information overload","score":0.58117473},{"id":"https://openalex.org/keywords/attack-model","display_name":"Attack model","score":0.5643944},{"id":"https://openalex.org/keywords/behavioral-analysis","display_name":"Behavioral Analysis","score":0.56282},{"id":"https://openalex.org/keywords/user-modeling","display_name":"User Modeling","score":0.560593},{"id":"https://openalex.org/keywords/bot-detection","display_name":"Bot Detection","score":0.528961},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5213879},{"id":"https://openalex.org/keywords/click-through-rate-prediction","display_name":"Click-Through Rate Prediction","score":0.518497},{"id":"https://openalex.org/keywords/context-aware-recommender-systems","display_name":"Context-Aware Recommender Systems","score":0.516623}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.845261},{"id":"https://openalex.org/C2776156558","wikidata":"https://www.wikidata.org/wiki/Q4353746","display_name":"MovieLens","level":4,"score":0.7228347},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.64465773},{"id":"https://openalex.org/C186625053","wikidata":"https://www.wikidata.org/wiki/Q1130191","display_name":"Information overload","level":2,"score":0.58117473},{"id":"https://openalex.org/C65856478","wikidata":"https://www.wikidata.org/wiki/Q3991682","display_name":"Attack model","level":2,"score":0.5643944},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5213879},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5144992},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.41446042},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4087909},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38370016},{"id":"https://openalex.org/C21569690","wikidata":"https://www.wikidata.org/wiki/Q94702","display_name":"Collaborative filtering","level":3,"score":0.3260057},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.20102996},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.11250076},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2018.00102","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.44,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1487388135","https://openalex.org/W1489114055","https://openalex.org/W1804016174","https://openalex.org/W2013619287","https://openalex.org/W2022613648","https://openalex.org/W2029424893","https://openalex.org/W2044831856","https://openalex.org/W2072651985","https://openalex.org/W2075446120","https://openalex.org/W2082182279","https://openalex.org/W2098121414","https://openalex.org/W2125031621","https://openalex.org/W2133699849","https://openalex.org/W2140310134","https://openalex.org/W2187089797","https://openalex.org/W2252625695","https://openalex.org/W2333643405","https://openalex.org/W2512770120","https://openalex.org/W2523899122","https://openalex.org/W2546668122","https://openalex.org/W2607917149","https://openalex.org/W2623765143","https://openalex.org/W2694602805","https://openalex.org/W2762761950","https://openalex.org/W2766433084","https://openalex.org/W2779799900","https://openalex.org/W2794121917","https://openalex.org/W2892961345","https://openalex.org/W392919349"],"related_works":["https://openalex.org/W4394818607","https://openalex.org/W4205822456","https://openalex.org/W2986679525","https://openalex.org/W2797500822","https://openalex.org/W2794458286","https://openalex.org/W2355698112","https://openalex.org/W2098758514","https://openalex.org/W2078352417","https://openalex.org/W2059480190","https://openalex.org/W2022984797"],"abstract_inverted_index":{"The":[0],"recommendation":[1,20,52,59],"systems":[2,21],"have":[3,22,106],"been":[4],"widely":[5],"employed":[6],"due":[7],"to":[8,58,72,83,121,128,134,190,202],"the":[9,13,19,30,43,47,51,76,87,92,99,123,138,141,169,176,182,197,203,218],"effectiveness":[10],"on":[11,69,98,207],"mitigating":[12],"information":[14,178],"overload":[15],"issue.":[16],"At":[17],"present,":[18],"made":[23],"great":[24,56],"progress,":[25],"but":[26,174],"they":[27],"are":[28,66,80],"under":[29],"threat":[31],"of":[32,36,143,184,194],"shilling":[33,62],"attack":[34,41,63,84,90],"because":[35],"their":[37],"open":[38],"nature.":[39],"Shilling":[40],"is":[42,96,200],"way":[44],"by":[45,146],"which":[46,79,95,165],"attackers":[48],"can":[49,118],"manipulate":[50],"results":[53],"and":[54,115,171,211],"cause":[55],"harm":[57],"systems.":[60],"Existing":[61],"detection":[64,93,161],"models":[65],"mainly":[67],"based":[68,97],"statistical":[70,100],"measures":[71],"extract":[73],"features":[74,110,145],"like":[75],"rating":[77],"deviation,":[78],"generally":[81],"susceptible":[82],"strategies.":[85],"Once":[86],"attacker":[88],"changes":[89],"strategy,":[91],"model":[94,199],"method":[101],"may":[102],"fail.":[103],"Some":[104],"researchers":[105],"identified":[107],"that":[108,214],"implicit":[109,187],"hidden":[111],"in":[112,154,181],"user-user":[113,170],"interactions":[114,117,173],"user-item":[116,172],"be":[119],"utilized":[120],"solve":[122,151],"problem.":[124],"Their":[125],"research":[126,139],"aims":[127],"learn":[129],"potential":[130],"relationship":[131],"between":[132],"users":[133],"update":[135],"features.":[136,188],"However,":[137],"ignores":[140],"significance":[142],"learning":[144,185],"employing":[147],"label":[148,177],"information.":[149],"To":[150],"this":[152,155],"problem,":[153],"paper,":[156],"we":[157],"propose":[158],"a":[159],"novel":[160],"model,":[162],"named":[163],"BayesDetector,":[164],"takes":[166],"not":[167],"only":[168],"also":[175],"into":[179],"consideration":[180],"process":[183],"user":[186,195],"Furthermore,":[189],"take":[191],"full":[192],"advantage":[193],"labels,":[196],"Bayesian":[198],"added":[201],"feature":[204],"learning.":[205],"Experiments":[206],"two":[208],"datasets,":[209],"Amazon":[210],"Movielens,":[212],"show":[213],"BayesDetector":[215],"significantly":[216],"outperforms":[217],"state-of-the-art":[219],"methods.":[220]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2904311070","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-22T00:43:13.380843","created_date":"2018-12-22"}