iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICRA.2014.6906983
{"id":"https://openalex.org/W2017098439","doi":"https://doi.org/10.1109/icra.2014.6906983","title":"Learning latent structure for activity recognition","display_name":"Learning latent structure for activity recognition","publication_year":2014,"publication_date":"2014-05-01","ids":{"openalex":"https://openalex.org/W2017098439","doi":"https://doi.org/10.1109/icra.2014.6906983","mag":"2017098439"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2014.6906983","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085312908","display_name":"Ninghang Hu","orcid":"https://orcid.org/0000-0001-6831-4653"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Ninghang Hu","raw_affiliation_strings":["Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074888054","display_name":"Gwenn Englebienne","orcid":"https://orcid.org/0000-0002-3130-2082"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Gwenn Englebienne","raw_affiliation_strings":["Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080687142","display_name":"Zhongyu Lou","orcid":"https://orcid.org/0000-0003-3985-1956"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Zhongyu Lou","raw_affiliation_strings":["Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049349937","display_name":"Ben Kr\u00f6se","orcid":"https://orcid.org/0000-0003-1237-0618"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Ben Krose","raw_affiliation_strings":["Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Intelligent System Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Netherlands","institution_ids":["https://openalex.org/I887064364"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.65,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":39,"citation_normalized_percentile":{"value":0.864716,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"1048","last_page":"1053"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.74815},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.74049705},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6677797},{"id":"https://openalex.org/keywords/conditional-independence","display_name":"Conditional independence","score":0.59034705}],"concepts":[{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.74815},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.74049705},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72973007},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7191606},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6677797},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62776136},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.60060775},{"id":"https://openalex.org/C79772020","wikidata":"https://www.wikidata.org/wiki/Q5159264","display_name":"Conditional independence","level":2,"score":0.59034705},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.58504814},{"id":"https://openalex.org/C112933361","wikidata":"https://www.wikidata.org/wiki/Q2845258","display_name":"Probabilistic latent semantic analysis","level":2,"score":0.5554277},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.53687656},{"id":"https://openalex.org/C65965080","wikidata":"https://www.wikidata.org/wiki/Q1806885","display_name":"Latent variable model","level":3,"score":0.5007355},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.41384053},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36601883},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra.2014.6906983","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.76,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1932327087","https://openalex.org/W1988283640","https://openalex.org/W2004671724","https://openalex.org/W2017695267","https://openalex.org/W2031248101","https://openalex.org/W2069808690","https://openalex.org/W2095095223","https://openalex.org/W2101534792","https://openalex.org/W2105842272","https://openalex.org/W2114016557","https://openalex.org/W2114216982","https://openalex.org/W2117853077","https://openalex.org/W2123277412","https://openalex.org/W2126484555","https://openalex.org/W2137117160","https://openalex.org/W2142258645","https://openalex.org/W2144836231","https://openalex.org/W2145835757","https://openalex.org/W2146055337","https://openalex.org/W2147102238","https://openalex.org/W2147196093","https://openalex.org/W2169447051","https://openalex.org/W2182497163"],"related_works":["https://openalex.org/W2906932471","https://openalex.org/W2884410131","https://openalex.org/W2763292376","https://openalex.org/W2331205114","https://openalex.org/W2242083226","https://openalex.org/W2138996412","https://openalex.org/W2097596242","https://openalex.org/W1603253275","https://openalex.org/W1514645777","https://openalex.org/W111011176"],"abstract_inverted_index":{"We":[0],"present":[1,56],"a":[2,67],"novel":[3],"latent":[4,31,109,117],"discriminative":[5],"model":[6,20,37,65,78,92,131,146],"for":[7,115],"human":[8],"activity":[9,34],"recognition.":[10],"Unlike":[11],"the":[12,26,58,63,71,77,90,96,108,116,124,133],"approaches":[13],"that":[14,129],"require":[15],"conditional":[16],"independence":[17],"assumptions,":[18],"our":[19,130,145],"is":[21,38,74,79,104,119,147],"very":[22,80],"flexible":[23],"in":[24,47,57,82,139,150],"encoding":[25],"full":[27],"connectivity":[28],"among":[29],"observations,":[30],"states,":[32],"and":[33,50,85,142],"states.":[35],"The":[36,87],"able":[39],"to":[40,106],"capture":[41],"richer":[42],"class":[43],"of":[44,89],"contextual":[45],"information":[46],"both":[48,83,140],"state-state":[49],"observation-state":[51],"pairs.":[52],"Although":[53],"loops":[54],"are":[55,93],"model,":[59],"we":[60],"can":[61],"consider":[62],"graphical":[64,91],"as":[66],"linear-chain":[68],"structure,":[69],"where":[70],"exact":[72],"inference":[73,84],"tractable.":[75],"Thereby":[76],"efficient":[81,149],"learning.":[86],"parameters":[88],"learned":[94],"with":[95],"Structured-Support":[97],"Vector":[98],"Machine":[99],"(Structured-SVM).":[100],"A":[101],"data-driven":[102],"approach":[103,135],"used":[105],"initialize":[107],"variables,":[110],"thereby":[111],"no":[112],"hand":[113],"labeling":[114],"states":[118],"required.":[120],"Experimental":[121],"results":[122],"on":[123],"CAD-120":[125],"benchmark":[126],"dataset":[127],"show":[128],"outperforms":[132],"state-of-the-art":[134],"by":[136],"over":[137],"5%":[138],"precision":[141],"recall,":[143],"while":[144],"more":[148],"computation.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2017098439","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":6},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":14},{"year":2015,"cited_by_count":6},{"year":2014,"cited_by_count":3}],"updated_date":"2024-12-07T20:53:27.507367","created_date":"2016-06-24"}