iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICPR48806.2021.9412684
{"id":"https://openalex.org/W3158240034","doi":"https://doi.org/10.1109/icpr48806.2021.9412684","title":"Removing Backdoor-Based Watermarks in Neural Networks with Limited Data","display_name":"Removing Backdoor-Based Watermarks in Neural Networks with Limited Data","publication_year":2021,"publication_date":"2021-01-10","ids":{"openalex":"https://openalex.org/W3158240034","doi":"https://doi.org/10.1109/icpr48806.2021.9412684","mag":"3158240034"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr48806.2021.9412684","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2008.00407","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045780526","display_name":"Xuankai Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xuankai Liu","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101774044","display_name":"Fengting Li","orcid":"https://orcid.org/0000-0002-4839-3435"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fengting Li","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024709593","display_name":"Bihan Wen","orcid":"https://orcid.org/0000-0002-6874-6453"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Bihan Wen","raw_affiliation_strings":["Nanyang Technological University"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100350165","display_name":"Qi Li","orcid":"https://orcid.org/0000-0001-8776-8730"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qi Li","raw_affiliation_strings":["BNRist"],"affiliations":[{"raw_affiliation_string":"BNRist","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.911,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.999913,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backdoor","display_name":"Backdoor","score":0.9545469},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.7953916},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.51673},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.505816},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.505151},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.46706232}],"concepts":[{"id":"https://openalex.org/C2781045450","wikidata":"https://www.wikidata.org/wiki/Q254569","display_name":"Backdoor","level":2,"score":0.9545469},{"id":"https://openalex.org/C150817343","wikidata":"https://www.wikidata.org/wiki/Q875932","display_name":"Digital watermarking","level":3,"score":0.93058616},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7953916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78462976},{"id":"https://openalex.org/C164112704","wikidata":"https://www.wikidata.org/wiki/Q7974348","display_name":"Watermark","level":3,"score":0.7650583},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6960138},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5965628},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.46706232},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4654072},{"id":"https://openalex.org/C34974158","wikidata":"https://www.wikidata.org/wiki/Q131257","display_name":"Intellectual property","level":2,"score":0.4258827},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42142347},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4196633},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.2814114},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.21375662},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17357323},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr48806.2021.9412684","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.00407","pdf_url":"https://arxiv.org/pdf/2008.00407","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.00407","pdf_url":"https://arxiv.org/pdf/2008.00407","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320320709","funder_display_name":"National Research Foundation Singapore","award_id":null},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61572278"}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W2112796928","https://openalex.org/W2113325037","https://openalex.org/W2144354855","https://openalex.org/W2193413348","https://openalex.org/W2294710185","https://openalex.org/W2560647685","https://openalex.org/W2579318729","https://openalex.org/W2727053942","https://openalex.org/W2748789698","https://openalex.org/W2753783305","https://openalex.org/W2765325683","https://openalex.org/W2768064608","https://openalex.org/W2774423163","https://openalex.org/W2806082141","https://openalex.org/W2807363941","https://openalex.org/W2807469694","https://openalex.org/W2890753317","https://openalex.org/W2900018096","https://openalex.org/W2902351501","https://openalex.org/W2934843808","https://openalex.org/W2937447982","https://openalex.org/W2952348804","https://openalex.org/W2963771448","https://openalex.org/W2990270730","https://openalex.org/W2998508940","https://openalex.org/W3102733833","https://openalex.org/W3184974140","https://openalex.org/W4285719527","https://openalex.org/W4288322434","https://openalex.org/W4289300166","https://openalex.org/W4294506858"],"related_works":["https://openalex.org/W2385289568","https://openalex.org/W2381486749","https://openalex.org/W2358993821","https://openalex.org/W2137394636","https://openalex.org/W2098152888","https://openalex.org/W2080353903","https://openalex.org/W2040356834","https://openalex.org/W1559740347","https://openalex.org/W1516446231","https://openalex.org/W1514507288"],"abstract_inverted_index":{"Deep":[0],"neural":[1],"networks":[2],"have":[3],"been":[4],"widely":[5],"applied":[6],"and":[7,22,32,47,112,126,156,196],"achieved":[8],"great":[9],"success":[10],"in":[11,201],"various":[12,71],"fields.":[13],"As":[14],"training":[15,154,243],"deep":[16,28,146,231],"models":[17,29,147,165],"usually":[18],"consumes":[19],"massive":[20],"data":[21,110,176,200],"computational":[23],"resources,":[24],"trading":[25,38],"the":[26,36,78,84,88,93,122,143,157,162,183,190,194,202,226,230,235,239],"trained":[27,166],"is":[30,87,99,179],"highly-demanded":[31],"lucrative":[33],"nowadays.":[34],"Unfortunately,":[35],"naive":[37],"schemes":[39],"typically":[40],"involves":[41],"potential":[42],"risks":[43],"related":[44],"to":[45,58,63,76,181,242],"copyright":[46],"trustworthiness":[48],"issues,":[49],"e.g.,":[50],"a":[51,128,150,174],"sold":[52],"model":[53,79,159,232],"can":[54,160,223],"be":[55],"illegally":[56],"resold":[57],"others":[59],"without":[60,169,228],"further":[61],"authorization":[62],"reap":[64],"huge":[65],"profits.":[66],"To":[67],"tackle":[68],"this":[69,118],"problem,":[70],"watermarking":[72,86,97,115],"techniques":[73],"are":[74],"proposed":[75,140],"protect":[77],"intellectual":[80],"property,":[81],"amongst":[82],"which":[83],"backdoor-based":[85,130],"most":[89],"commonly-used":[90],"one.":[91],"However,":[92],"robustness":[94,123],"of":[95,114,124,145,153,185,213],"these":[96],"approaches":[98],"not":[100],"well":[101,208],"evaluated":[102],"under":[103],"realistic":[104],"settings,":[105],"such":[106],"as":[107,164],"limited":[108,135,240],"in-distribution":[109],"availability":[111],"agnostic":[113],"patterns.":[116],"In":[117,172],"paper,":[119],"we":[120],"benchmark":[121],"watermarking,":[125],"propose":[127],"novel":[129,175],"watermark":[131,186],"removal":[132],"framework":[133],"using":[134],"data,":[136,155],"dubbed":[137],"WILD.":[138],"The":[139,216],"WILD":[141],"removes":[142],"watermarks":[144,170,227],"with":[148,189,238],"only":[149],"small":[151],"portion":[152],"output":[158],"perform":[161],"same":[163],"from":[167],"scratch":[168],"injected.":[171],"particular,":[173],"augmentation":[177],"method":[178],"utilized":[180],"mimic":[182],"behavior":[184],"triggers.":[187],"Combining":[188],"distribution":[191],"alignment":[192],"between":[193],"normal":[195],"perturbed":[197],"(e.g.,":[198],"occluded)":[199],"feature":[203],"space,":[204],"our":[205,221],"approach":[206,222],"generalizes":[207],"on":[209],"all":[210],"typical":[211],"types":[212],"trigger":[214],"contents.":[215],"experimental":[217],"results":[218],"demonstrate":[219],"that":[220],"effectively":[224],"remove":[225],"compromising":[229],"performance":[233],"for":[234],"original":[236],"task":[237],"access":[241],"data.":[244]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3158240034","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":6}],"updated_date":"2024-11-23T19:34:26.456865","created_date":"2021-05-10"}