iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICPR.2002.1048275
{"id":"https://openalex.org/W2120212180","doi":"https://doi.org/10.1109/icpr.2002.1048275","title":"Beam search for feature selection in automatic SVM defect classification","display_name":"Beam search for feature selection in automatic SVM defect classification","publication_year":2003,"publication_date":"2003-06-25","ids":{"openalex":"https://openalex.org/W2120212180","doi":"https://doi.org/10.1109/icpr.2002.1048275","mag":"2120212180"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2002.1048275","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053868970","display_name":"Priya Gupta","orcid":"https://orcid.org/0000-0002-4666-4203"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"P. Gupta","raw_affiliation_strings":["Language & Media Process. Lab., Maryland Univ., College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Language & Media Process. Lab., Maryland Univ., College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003875781","display_name":"David Doermann","orcid":"https://orcid.org/0000-0003-1639-4561"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. Doermann","raw_affiliation_strings":["Language & Media Process. Lab., Maryland Univ., College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Language & Media Process. Lab., Maryland Univ., College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038953612","display_name":"Daniel DeMenthon","orcid":null},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. DeMenthon","raw_affiliation_strings":["Language & Media Process. Lab., Maryland Univ., College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Language & Media Process. Lab., Maryland Univ., College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.685,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":28,"citation_normalized_percentile":{"value":0.980516,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"2","issue":null,"first_page":"212","last_page":"215"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Fabric Defect Detection in Industrial Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Fabric Defect Detection in Industrial Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-selection","display_name":"Feature Selection","score":0.606992},{"id":"https://openalex.org/keywords/surface-defect-detection","display_name":"Surface Defect Detection","score":0.592391},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.566648},{"id":"https://openalex.org/keywords/fabric-defect-detection","display_name":"Fabric Defect Detection","score":0.550213},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5478539},{"id":"https://openalex.org/keywords/linear-classifier","display_name":"Linear classifier","score":0.5438105},{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.522384}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.76727974},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.72839993},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.7234856},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.71124816},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6885527},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68691194},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.6441934},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5478539},{"id":"https://openalex.org/C139532973","wikidata":"https://www.wikidata.org/wiki/Q2679259","display_name":"Linear classifier","level":3,"score":0.5438105},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4760011},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42882967},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41085532}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2002.1048275","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.68,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1486540228","https://openalex.org/W1553244859","https://openalex.org/W1559923427","https://openalex.org/W1577933906","https://openalex.org/W1849729440","https://openalex.org/W1906182963","https://openalex.org/W2039537889","https://openalex.org/W2040884411","https://openalex.org/W2079199680","https://openalex.org/W2082562420","https://openalex.org/W2124351082","https://openalex.org/W2146276101","https://openalex.org/W2156909104","https://openalex.org/W23418094","https://openalex.org/W2799061466","https://openalex.org/W4205687621","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W563719335","https://openalex.org/W3139983161","https://openalex.org/W3112445271","https://openalex.org/W2368894008","https://openalex.org/W2169139688","https://openalex.org/W2141335490","https://openalex.org/W2134510694","https://openalex.org/W2109566635","https://openalex.org/W1983827846","https://openalex.org/W1964081096"],"abstract_inverted_index":{"Often":[0],"in":[1,45,64],"pattern":[2],"classification":[3],"problems,":[4],"one":[5],"tries":[6],"to":[7,52],"extract":[8],"a":[9,78,100],"large":[10,40],"number":[11],"of":[12,29,36,74,120],"features":[13,30,69,75],"and":[14,56],"base":[15],"the":[16,37,47,54,61,65,71,118,121,128],"classifier":[17,106,129],"decision":[18],"on":[19],"as":[20,23],"much":[21],"information":[22,63],"possible.":[24],"This":[25,111],"yields":[26],"an":[27,86],"array":[28],"that":[31],"are":[32,43],"'potentially'":[33],"useful.":[34],"Most":[35],"time":[38],"however,":[39],"feature":[41,88,112,122],"sets":[42],"sub-optimal":[44],"describing":[46],"samples":[48],"since":[49],"they":[50],"tend":[51],"over-represent":[53],"data":[55],"model":[57],"noise":[58],"along":[59],"with":[60,99],"useful":[62],"data.":[66],"Selecting":[67],"relevant":[68],"from":[70],"available":[72],"set":[73],"is,":[76],"therefore,":[77],"challenging":[79],"task.":[80],"In":[81],"this":[82],"paper,":[83],"we":[84],"present":[85],"innovative":[87],"selection":[89,113],"algorithm":[90],"called":[91],"Smart":[92],"Beam":[93],"Search":[94],"(SBS),":[95],"which":[96],"is":[97],"used":[98],"support":[101],"vector":[102],"machine":[103],"(SVM)":[104],"based":[105],"for":[107],"automatic":[108],"defect":[109],"classification.":[110],"approach":[114],"not":[115],"only":[116],"reduces":[117],"dimensionality":[119],"space":[123],"substantially,":[124],"but":[125],"also":[126],"improves":[127],"performance.":[130]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2120212180","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":3},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2024-11-27T20:03:09.086295","created_date":"2016-06-24"}