iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICNSC.2017.8000101
{"id":"https://openalex.org/W2743017084","doi":"https://doi.org/10.1109/icnsc.2017.8000101","title":"Evaluating weightless neural networks for bias identification on news","display_name":"Evaluating weightless neural networks for bias identification on news","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2743017084","doi":"https://doi.org/10.1109/icnsc.2017.8000101","mag":"2743017084"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnsc.2017.8000101","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041376767","display_name":"Rafael Dutra Cavalcanti","orcid":null},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Rafael Dutra Cavalcanti","raw_affiliation_strings":["Universidade Federal do Rio de Janeiro - PPGI, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal do Rio de Janeiro - PPGI, Brazil","institution_ids":["https://openalex.org/I122140584"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058318838","display_name":"Priscila M. V. Lima","orcid":"https://orcid.org/0000-0002-8515-9904"},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Priscila M.V. Lima","raw_affiliation_strings":["Universidade Federal do Rio de Janeiro - PPGI, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal do Rio de Janeiro - PPGI, Brazil","institution_ids":["https://openalex.org/I122140584"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055763949","display_name":"Massimo De Gregorio","orcid":"https://orcid.org/0000-0001-8453-1201"},"institutions":[{"id":"https://openalex.org/I4210091512","display_name":"Institute of Applied Science and Intelligent Systems","ror":"https://ror.org/00be3zh53","country_code":"IT","type":"facility","lineage":["https://openalex.org/I4210091512","https://openalex.org/I4210155236"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Massimo De Gregorio","raw_affiliation_strings":["Istituto di Scienze Applicate e Sistemi Intelligenti - CNR, Pozzuoli, NA, Italy"],"affiliations":[{"raw_affiliation_string":"Istituto di Scienze Applicate e Sistemi Intelligenti - CNR, Pozzuoli, NA, Italy","institution_ids":["https://openalex.org/I4210091512"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034604991","display_name":"Daniel Sadoc Menasch\u00e9","orcid":"https://orcid.org/0000-0002-8953-4003"},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Daniel Sadoc Menasche","raw_affiliation_strings":["Universidade Federal do Rio de Janeiro - PPGI, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal do Rio de Janeiro - PPGI, Brazil","institution_ids":["https://openalex.org/I122140584"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.291,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.732653,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Detection and Prevention of Phishing Attacks","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting (machine learning)","score":0.6194787},{"id":"https://openalex.org/keywords/identification","display_name":"Identification (biology)","score":0.5360468},{"id":"https://openalex.org/keywords/bot-detection","display_name":"Bot Detection","score":0.512286},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.511492},{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.506525},{"id":"https://openalex.org/keywords/gradient-boosting","display_name":"Gradient boosting","score":0.4924818},{"id":"https://openalex.org/keywords/pace","display_name":"Pace","score":0.4616154}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75546},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6596608},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6298444},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.6194787},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.59928566},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5504903},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.5360468},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5043925},{"id":"https://openalex.org/C70153297","wikidata":"https://www.wikidata.org/wiki/Q5591907","display_name":"Gradient boosting","level":3,"score":0.4924818},{"id":"https://openalex.org/C2777526511","wikidata":"https://www.wikidata.org/wiki/Q691543","display_name":"Pace","level":2,"score":0.4616154},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4392439},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.1177313},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icnsc.2017.8000101","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.7,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1526302151","https://openalex.org/W1550206324","https://openalex.org/W1596717185","https://openalex.org/W1608320902","https://openalex.org/W1728842521","https://openalex.org/W177034761","https://openalex.org/W2027406879","https://openalex.org/W2080058960","https://openalex.org/W2105250379","https://openalex.org/W2118020653","https://openalex.org/W2118585731","https://openalex.org/W2120247405","https://openalex.org/W2139212933","https://openalex.org/W2163190394","https://openalex.org/W2902463901","https://openalex.org/W3001645704","https://openalex.org/W3099884658","https://openalex.org/W3214647942","https://openalex.org/W349770100","https://openalex.org/W4213009331","https://openalex.org/W4250664506","https://openalex.org/W4254721730","https://openalex.org/W4294089543","https://openalex.org/W4298222310","https://openalex.org/W643855938"],"related_works":["https://openalex.org/W4310492845","https://openalex.org/W4310224730","https://openalex.org/W4289703016","https://openalex.org/W3204430031","https://openalex.org/W3137904399","https://openalex.org/W3094138326","https://openalex.org/W2967733078","https://openalex.org/W2885778889","https://openalex.org/W2885516856","https://openalex.org/W2766514146"],"abstract_inverted_index":{"Identifying":[0],"biases":[1],"in":[2,5,16,69,109],"articles":[3],"published":[4],"the":[6,12,17,45,73,84,103,124],"news":[7,32,78],"media":[8],"is":[9,33],"one":[10],"of":[11,19,31,67,105],"most":[13],"fundamental":[14],"problems":[15],"realm":[18],"journalism":[20],"and":[21,23,62,89,118],"communication,":[22],"automatic":[24],"mechanisms":[25,91],"for":[26,38,65,87,92,102],"detecting":[27],"that":[28],"a":[29,48,99],"piece":[30],"biased":[34],"have":[35],"been":[36],"studied":[37],"decades.":[39],"In":[40],"this":[41],"paper,":[42],"we":[43,82],"compare":[44],"WiSARD":[46,95],"classifier,":[47],"lightweight":[49],"efficient":[50,88],"weightless":[51],"neural":[52],"network":[53],"architecture,":[54],"against":[55,123],"Logistic":[56],"Regression,":[57],"Gradient":[58],"Tree":[59],"Boosting,":[60],"SVM":[61],"Naive":[63],"Bayes":[64],"identification":[66],"polarity":[68],"news.":[70],"Motivated":[71],"by":[72],"fast":[74],"pace":[75],"at":[76],"which":[77],"feeds":[79],"are":[80],"published,":[81],"envision":[83],"increasing":[85],"need":[86],"accurate":[90],"bias":[93,106],"detection.":[94],"presented":[96],"itself":[97],"as":[98],"good":[100],"candidate":[101],"task":[104],"identification,":[107],"specially":[108],"dynamic":[110],"contexts,":[111],"due":[112],"to":[113],"its":[114],"online":[115],"learning":[116],"ability":[117],"comparable":[119],"accuracy":[120],"when":[121],"contrasted":[122],"considered":[125],"alternatives.":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2743017084","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1}],"updated_date":"2024-09-23T19:00:26.210030","created_date":"2017-08-17"}