iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICMLA51294.2020.00072
{"id":"https://openalex.org/W3129564339","doi":"https://doi.org/10.1109/icmla51294.2020.00072","title":"Evaluating The Number of Trainable Parameters on Deep Maxout and LReLU Networks for Visual Recognition","display_name":"Evaluating The Number of Trainable Parameters on Deep Maxout and LReLU Networks for Visual Recognition","publication_year":2020,"publication_date":"2020-12-01","ids":{"openalex":"https://openalex.org/W3129564339","doi":"https://doi.org/10.1109/icmla51294.2020.00072","mag":"3129564339"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla51294.2020.00072","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030660476","display_name":"Gabriel Antonio P\u00e9rez Casta\u00f1eda","orcid":"https://orcid.org/0000-0002-4307-3045"},"institutions":[{"id":"https://openalex.org/I63772739","display_name":"Florida Atlantic University","ror":"https://ror.org/05p8w6387","country_code":"US","type":"education","lineage":["https://openalex.org/I63772739"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gabriel Castaneda","raw_affiliation_strings":["College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA"],"affiliations":[{"raw_affiliation_string":"College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA","institution_ids":["https://openalex.org/I63772739"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040859657","display_name":"Paul Morris","orcid":"https://orcid.org/0000-0003-0139-5262"},"institutions":[{"id":"https://openalex.org/I63772739","display_name":"Florida Atlantic University","ror":"https://ror.org/05p8w6387","country_code":"US","type":"education","lineage":["https://openalex.org/I63772739"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul Morris","raw_affiliation_strings":["College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA"],"affiliations":[{"raw_affiliation_string":"College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA","institution_ids":["https://openalex.org/I63772739"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5089170562","display_name":"Taghi M. Khoshgoftaar","orcid":null},"institutions":[{"id":"https://openalex.org/I63772739","display_name":"Florida Atlantic University","ror":"https://ror.org/05p8w6387","country_code":"US","type":"education","lineage":["https://openalex.org/I63772739"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Taghi M. Khoshgoftaar","raw_affiliation_strings":["College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA"],"affiliations":[{"raw_affiliation_string":"College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA","institution_ids":["https://openalex.org/I63772739"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.075,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.433429,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.571887},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.564161},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.529633},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.527579},{"id":"https://openalex.org/keywords/visual-recognition","display_name":"Visual Recognition","score":0.526032}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73375285},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7290777},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.61976796},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46741772},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44136474},{"id":"https://openalex.org/C64876066","wikidata":"https://www.wikidata.org/wiki/Q5141226","display_name":"Cognitive neuroscience of visual object recognition","level":3,"score":0.4363035},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.43594515},{"id":"https://openalex.org/C92047909","wikidata":"https://www.wikidata.org/wiki/Q204034","display_name":"Hyperbolic function","level":2,"score":0.43011978},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4272987},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3850822},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16846702},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icmla51294.2020.00072","pdf_url":null,"source":{"id":"https://openalex.org/S4363607906","display_name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1538131130","https://openalex.org/W1665214252","https://openalex.org/W1677182931","https://openalex.org/W1686810756","https://openalex.org/W1694178301","https://openalex.org/W1782590233","https://openalex.org/W1921523184","https://openalex.org/W1936750108","https://openalex.org/W1968419113","https://openalex.org/W1997011019","https://openalex.org/W2095705004","https://openalex.org/W2102605133","https://openalex.org/W2112796928","https://openalex.org/W2137857332","https://openalex.org/W2145287260","https://openalex.org/W2163605009","https://openalex.org/W2253535400","https://openalex.org/W2271840356","https://openalex.org/W2294059674","https://openalex.org/W2335728318","https://openalex.org/W2515770085","https://openalex.org/W2603666613","https://openalex.org/W2750384547","https://openalex.org/W2755396225","https://openalex.org/W2788545320","https://openalex.org/W2936503027","https://openalex.org/W2963012631","https://openalex.org/W2963454111","https://openalex.org/W2963460857","https://openalex.org/W2963828527","https://openalex.org/W2963911037","https://openalex.org/W2964067969","https://openalex.org/W2966217148","https://openalex.org/W2998547090","https://openalex.org/W3008089047","https://openalex.org/W3118608800"],"related_works":["https://openalex.org/W564581980","https://openalex.org/W4366224123","https://openalex.org/W4320802194","https://openalex.org/W4311257506","https://openalex.org/W2963958939","https://openalex.org/W2738221750","https://openalex.org/W2732542196","https://openalex.org/W2602663006","https://openalex.org/W2536452361","https://openalex.org/W2337926734"],"abstract_inverted_index":{"Object":[0],"recognition":[1],"research":[2],"has":[3],"made":[4],"notable":[5],"steps":[6],"since":[7],"the":[8,23,50,57,98,116,139],"appearance":[9],"of":[10,26,52,100,119,138],"convolutional":[11,104],"neural":[12],"networks,":[13],"and":[14,81,91,96,111],"many":[15,36],"activation":[16,141],"functions":[17],"have":[18,31],"been":[19],"proposed":[20],"to":[21,67,84],"enhance":[22],"classification":[24],"performance":[25,58],"these":[27],"networks.":[28,69],"Maxout":[29],"networks":[30,65,113],"achieved":[32],"great":[33],"success":[34],"in":[35,49,59,102],"computer":[37],"vision":[38],"tasks,":[39],"but":[40],"there":[41],"is":[42],"limited":[43],"information":[44],"on":[45,128],"whether":[46],"an":[47],"increase":[48,56],"number":[51,99,118],"trainable":[53,120],"parameters":[54],"can":[55],"Leaky":[60],"Rectified":[61],"Linear":[62],"Unit":[63],"(LReLU)":[64],"compared":[66],"maxout":[68,86,112],"Our":[70],"experiments":[71],"compare":[72],"LReLU,":[73],"rectified":[74],"linear":[75,79],"unit,":[76,80],"scaled":[77],"exponential":[78],"hyperbolic":[82],"tangent":[83],"four":[85],"variants.":[87],"We":[88,106],"evaluate":[89,108],"ReLU":[90],"LReLU":[92,110,133],"with":[93,114],"2x,":[94],"3x":[95],"6x":[97],"filters":[101],"each":[103],"layer.":[105],"also":[107],"ReLU,":[109],"approximately":[115],"same":[117],"parameters.":[121],"Under":[122],"equal":[123],"conditions,":[124],"we":[125],"found":[126],"that":[127],"average,":[129],"across":[130],"all":[131],"datasets,":[132],"performs":[134],"better":[135],"than":[136],"any":[137],"evaluated":[140],"functions.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3129564339","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2024-11-21T14:36:23.540865","created_date":"2021-03-01"}