{"id":"https://openalex.org/W3195537979","doi":"https://doi.org/10.1109/icip42928.2021.9506382","title":"L-Snet: From Region Localization To Scale Invariant Medical Image Segmentation","display_name":"L-Snet: From Region Localization To Scale Invariant Medical Image Segmentation","publication_year":2021,"publication_date":"2021-08-23","ids":{"openalex":"https://openalex.org/W3195537979","doi":"https://doi.org/10.1109/icip42928.2021.9506382","mag":"3195537979"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506382","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2102.05971","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101438313","display_name":"Jiahao Xie","orcid":"https://orcid.org/0000-0002-8033-9121"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiahao Xie","raw_affiliation_strings":["School of Software Engineering, Tongji University, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Tongji University, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100394010","display_name":"Sheng Zhang","orcid":"https://orcid.org/0000-0002-1993-1660"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sheng Zhang","raw_affiliation_strings":["School of Software Engineering, Tongji University, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Tongji University, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071813171","display_name":"Jianwei Lu","orcid":"https://orcid.org/0000-0002-9071-9443"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianwei Lu","raw_affiliation_strings":["School of Software Engineering, Tongji University, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Tongji University, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014359523","display_name":"Ye Luo","orcid":"https://orcid.org/0000-0002-7052-7268"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ye Luo","raw_affiliation_strings":["School of Software Engineering, Tongji University, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Tongji University, China","institution_ids":["https://openalex.org/I116953780"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":"28","issue":null,"first_page":"41","last_page":"45"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"Deep Learning in Medical Image Analysis","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Image Segmentation Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mri-segmentation","display_name":"MRI Segmentation","score":0.584372},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.57126},{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.55426997},{"id":"https://openalex.org/keywords/level-set-methods","display_name":"Level Set Methods","score":0.512053}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.77037203},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7486196},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70868295},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.673591},{"id":"https://openalex.org/C42314347","wikidata":"https://www.wikidata.org/wiki/Q6865488","display_name":"Minimum spanning tree-based segmentation","level":5,"score":0.6323779},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.61658645},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.55426997},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.50280285},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4774478},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45670483},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.456119},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.4432521},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.42918825},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.21997812},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15470806},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0887205},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.06532869},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip42928.2021.9506382","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2102.05971","pdf_url":"https://arxiv.org/pdf/2102.05971","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2102.05971","pdf_url":"https://arxiv.org/pdf/2102.05971","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W2117539524","https://openalex.org/W2194775991","https://openalex.org/W2307770531","https://openalex.org/W2560023338","https://openalex.org/W2618237340","https://openalex.org/W2630837129","https://openalex.org/W2771252144","https://openalex.org/W2798122215","https://openalex.org/W2884436604","https://openalex.org/W2963351448","https://openalex.org/W2963881378","https://openalex.org/W2979850397","https://openalex.org/W2989604896","https://openalex.org/W2997747012","https://openalex.org/W3006300626","https://openalex.org/W3012573144","https://openalex.org/W603908379"],"related_works":["https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2790780243","https://openalex.org/W2559983475","https://openalex.org/W2553765490","https://openalex.org/W2551987074","https://openalex.org/W2355564272","https://openalex.org/W2353364291","https://openalex.org/W2185902295","https://openalex.org/W2030441184"],"abstract_inverted_index":{"Coarse-to-fine":[0],"models":[1,120],"and":[2,48,102],"cascade":[3],"segmentation":[4,30,86,91],"architectures":[5],"are":[6],"widely":[7],"adopted":[8],"to":[9,60],"solve":[10],"the":[11,28,35,41,65,82,93,105,110],"problem":[12],"of":[13,37,44,74],"large":[14],"scale":[15],"variations":[16],"in":[17,77,81],"medical":[18],"image":[19],"segmentation.":[20],"However,":[21],"those":[22],"methods":[23],"have":[24],"two":[25,45],"primary":[26],"limitations:":[27],"first-stage":[29],"becomes":[31],"a":[32,55,68,78,85],"performance":[33],"bottleneck;":[34],"lack":[36],"overall":[38],"differentiability":[39],"makes":[40],"training":[42],"process":[43],"stages":[46],"asynchronous":[47],"inconsistent.":[49],"In":[50,64],"this":[51],"paper,":[52],"we":[53],"propose":[54],"differentiable":[56],"two-stage":[57],"network":[58,70,87],"architecture":[59],"tackle":[61],"these":[62],"problems.":[63],"first":[66],"stage,":[67,84],"localization":[69],"(L-Net)":[71],"locates":[72],"Regions":[73],"Interest":[75],"(RoIs)":[76],"detection":[79],"fashion;":[80],"second":[83],"(S-Net)":[88],"performs":[89],"fine":[90],"on":[92,109],"recalibrated":[94],"RoIs;":[95],"an":[96],"RoI":[97],"recalibration":[98],"module":[99],"between":[100],"L-Net":[101],"S-Net":[103],"eliminating":[104],"inconsistencies.":[106],"Experimental":[107],"results":[108],"public":[111],"dataset":[112],"show":[113],"that":[114],"our":[115],"method":[116],"outperforms":[117],"state-of-the-art":[118],"coarse-to-fine":[119],"with":[121],"comparable":[122],"computation.":[123]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3195537979","counts_by_year":[],"updated_date":"2024-11-26T22:23:38.973059","created_date":"2021-08-30"}