iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICIAP.2001.956987
{"id":"https://openalex.org/W2138679823","doi":"https://doi.org/10.1109/iciap.2001.956987","title":"Wavelet-based texture segmentation of remotely sensed images","display_name":"Wavelet-based texture segmentation of remotely sensed images","publication_year":2002,"publication_date":"2002-11-13","ids":{"openalex":"https://openalex.org/W2138679823","doi":"https://doi.org/10.1109/iciap.2001.956987","mag":"2138679823"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iciap.2001.956987","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.isical.ac.in/~malay/Papers/Conf/ICIAP_Italy.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042801216","display_name":"Mausumi Acharyya","orcid":null},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"education","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"M. Acharyya","raw_affiliation_strings":["Indian Statistical Institute, Calcutta, India"],"affiliations":[{"raw_affiliation_string":"Indian Statistical Institute, Calcutta, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5033181114","display_name":"Malay K. Kundu","orcid":"https://orcid.org/0000-0002-9010-9100"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"education","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"M.K. Kundu","raw_affiliation_strings":["Indian Statistical Institute, Calcutta, India"],"affiliations":[{"raw_affiliation_string":"Indian Statistical Institute, Calcutta, India","institution_ids":["https://openalex.org/I6498739"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.474,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.664422,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.557649},{"id":"https://openalex.org/keywords/wavelet-transform","display_name":"Wavelet Transform","score":0.501753},{"id":"https://openalex.org/keywords/texture","display_name":"Texture (cosmology)","score":0.45372087},{"id":"https://openalex.org/keywords/lifting-scheme","display_name":"Lifting scheme","score":0.42834783},{"id":"https://openalex.org/keywords/multiresolution-analysis","display_name":"Multiresolution analysis","score":0.42346197},{"id":"https://openalex.org/keywords/stationary-wavelet-transform","display_name":"Stationary wavelet transform","score":0.41792974}],"concepts":[{"id":"https://openalex.org/C155777637","wikidata":"https://www.wikidata.org/wiki/Q2736187","display_name":"Wavelet packet decomposition","level":4,"score":0.7692355},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.7541811},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7416183},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.70325494},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6030886},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5805053},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5033025},{"id":"https://openalex.org/C63099799","wikidata":"https://www.wikidata.org/wiki/Q17147001","display_name":"Image texture","level":4,"score":0.48802558},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4743016},{"id":"https://openalex.org/C46286280","wikidata":"https://www.wikidata.org/wiki/Q2414958","display_name":"Discrete wavelet transform","level":4,"score":0.4739989},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.46419892},{"id":"https://openalex.org/C2781195486","wikidata":"https://www.wikidata.org/wiki/Q289436","display_name":"Texture (cosmology)","level":3,"score":0.45372087},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.43719524},{"id":"https://openalex.org/C199550912","wikidata":"https://www.wikidata.org/wiki/Q3238415","display_name":"Lifting scheme","level":5,"score":0.42834783},{"id":"https://openalex.org/C121927907","wikidata":"https://www.wikidata.org/wiki/Q1952516","display_name":"Multiresolution analysis","level":5,"score":0.42346197},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.42163998},{"id":"https://openalex.org/C73339587","wikidata":"https://www.wikidata.org/wiki/Q1375942","display_name":"Stationary wavelet transform","level":5,"score":0.41792974},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37999383},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.19379947},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iciap.2001.956987","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.7167","pdf_url":"http://www.isical.ac.in/~malay/Papers/Conf/ICIAP_Italy.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.7167","pdf_url":"http://www.isical.ac.in/~malay/Papers/Conf/ICIAP_Italy.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1623080549","https://openalex.org/W2049694710","https://openalex.org/W2062024414","https://openalex.org/W2106536101","https://openalex.org/W2119929398","https://openalex.org/W2132984323","https://openalex.org/W2137440839","https://openalex.org/W2164166190","https://openalex.org/W2911956715","https://openalex.org/W4255272544","https://openalex.org/W4255747608"],"related_works":["https://openalex.org/W68308810","https://openalex.org/W2391053410","https://openalex.org/W2358271565","https://openalex.org/W2111809908","https://openalex.org/W2097034666","https://openalex.org/W2085792030","https://openalex.org/W2075538140","https://openalex.org/W1976022598","https://openalex.org/W1588899229","https://openalex.org/W1506615375"],"abstract_inverted_index":{"A":[0],"texture":[1,52],"feature":[2],"extraction":[3],"scheme":[4,68],"based":[5,35,113],"on":[6,36,114],"M-band":[7,71],"wavelet":[8,66,72],"packet":[9,73],"frames":[10],"is":[11,34],"investigated.":[12],"The":[13,31],"features":[14],"so":[15],"extracted":[16],"are":[17],"used":[18],"for":[19],"segmentation":[20,79],"of":[21,50,86,89,97,118,126,128],"satellite":[22],"images":[23],"which":[24,76],"usually":[25],"have":[26],"complex":[27],"and":[28,92,140],"overlapping":[29],"boundaries.":[30],"underlying":[32],"principle":[33],"the":[37,56,60,87,110,123,129],"fact":[38],"that":[39],"different":[40,44],"image":[41],"regions":[42],"exhibit":[43],"textures.":[45],"Since":[46],"most":[47],"significant":[48],"information":[49,134],"a":[51,84,103],"often":[53],"lies":[54],"in":[55,135],"intermediate":[57],"frequency":[58],"bands,":[59],"present":[61],"work":[62],"employs":[63],"an":[64],"overcomplete":[65],"decomposition":[67,91],"called":[69],"discrete":[70],"frame":[74],"(DM-bWPF),":[75],"yields":[77],"improved":[78],"accuracies.":[80],"Wavelet":[81],"packets":[82],"represent":[83],"generalization":[85],"method":[88],"multiresolution":[90],"comprise":[93],"all":[94],"possible":[95],"combinations":[96],"subband":[98],"tree":[99],"decomposition.":[100,143],"We":[101],"propose":[102],"computationally":[104],"efficient":[105],"search":[106],"procedure":[107],"to":[108,131],"find":[109],"optimal":[111],"basis":[112],"some":[115],"maximum":[116],"criterion":[117],"textural":[119],"measures":[120],"derived":[121],"from":[122],"statistical":[124],"parameters":[125],"each":[127,136],"subbands,":[130],"locate":[132],"dominant":[133],"subbands":[137],"(frequency":[138],"channels)":[139],"decide":[141],"further":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2138679823","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-09-27T00:16:13.824324","created_date":"2016-06-24"}