{"id":"https://openalex.org/W2295228577","doi":"https://doi.org/10.1109/icdar.1993.395665","title":"Perfect metrics","display_name":"Perfect metrics","publication_year":2002,"publication_date":"2002-12-30","ids":{"openalex":"https://openalex.org/W2295228577","doi":"https://doi.org/10.1109/icdar.1993.395665","mag":"2295228577"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.1993.395665","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005650700","display_name":"Tuyen Thanh Thi Ho","orcid":"https://orcid.org/0000-0001-8687-0661"},"institutions":[{"id":"https://openalex.org/I1283103587","display_name":"AT&T (United States)","ror":"https://ror.org/02bbd5539","country_code":"US","type":"company","lineage":["https://openalex.org/I1283103587"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"T. Ho","raw_affiliation_strings":["AT and T Bell Laboratories, Inc., Murray Hill, NJ, USA"],"affiliations":[{"raw_affiliation_string":"AT and T Bell Laboratories, Inc., Murray Hill, NJ, USA","institution_ids":["https://openalex.org/I1283103587"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011850885","display_name":"Henry S. Baird","orcid":null},"institutions":[{"id":"https://openalex.org/I1283103587","display_name":"AT&T (United States)","ror":"https://ror.org/02bbd5539","country_code":"US","type":"company","lineage":["https://openalex.org/I1283103587"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"H.S. Baird","raw_affiliation_strings":["AT and T Bell Laboratories, Inc., Murray Hill, NJ, USA"],"affiliations":[{"raw_affiliation_string":"AT and T Bell Laboratories, Inc., Murray Hill, NJ, USA","institution_ids":["https://openalex.org/I1283103587"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.784,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":17,"citation_normalized_percentile":{"value":0.75238,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"593","last_page":"597"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwriting Recognition and Text Detection","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwriting Recognition and Text Detection","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/shape-matching","display_name":"Shape Matching","score":0.541334},{"id":"https://openalex.org/keywords/feature-descriptors","display_name":"Feature Descriptors","score":0.515236},{"id":"https://openalex.org/keywords/typeface","display_name":"Typeface","score":0.44448376}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6051573},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59647834},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.52533317},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.5147512},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.48394158},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.47975838},{"id":"https://openalex.org/C80797182","wikidata":"https://www.wikidata.org/wiki/Q17451","display_name":"Typeface","level":2,"score":0.44448376},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37969458},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33389658},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33213818},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.19104955},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.1993.395665","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.62,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W1592735339","https://openalex.org/W1637557056","https://openalex.org/W2038658268","https://openalex.org/W2800394774","https://openalex.org/W2913407066","https://openalex.org/W4205542061"],"related_works":["https://openalex.org/W769498136","https://openalex.org/W4234833486","https://openalex.org/W2782617023","https://openalex.org/W2770654","https://openalex.org/W2326324334","https://openalex.org/W2312731382","https://openalex.org/W2100627145","https://openalex.org/W2054174044","https://openalex.org/W1537542020","https://openalex.org/W1528829778"],"abstract_inverted_index":{"The":[0,47,90,117],"authors":[1,69,118],"describe":[2],"an":[3],"experiment":[4],"in":[5,41,133],"the":[6,53,61,68,77,120,150],"construction":[7],"of":[8,14,60,105,112,130,139],"perfect":[9,18],"metrics":[10],"for":[11,28,33],"minimum-distance":[12],"classification":[13],"character":[15,128],"images.":[16],"A":[17],"metric":[19],"is":[20,26,49,162,166],"one":[21],"that,":[22],"with":[23],"high":[24],"probability,":[25],"zero":[27],"correct":[29],"classifications":[30],"and":[31,95,114],"non-zero":[32],"incorrect":[34],"classifications.":[35],"They":[36],"promise":[37],"excellent":[38],"reject":[39],"behavior":[40],"addition":[42],"to":[43,50,168],"good":[44],"rank":[45],"ordering.":[46],"approach":[48],"infer":[51],"from":[52],"training":[54,97,106],"data":[55],"faithful":[56],"but":[57],"concise":[58],"representations":[59],"empirical":[62],"class-conditional":[63],"distributions.":[64],"In":[65,142,159],"doing":[66],"this,":[67],"have":[70],"abandoned":[71],"many":[72],"visual":[73],"simplifying":[74],"assumptions":[75],"about":[76],"distributions,":[78],"e.g.,":[79],"that":[80,164],"they":[81],"are":[82],"simply-connected,":[83],"unimodal,":[84],"convex,":[85],"or":[86],"parametric":[87,171],"(e.g.,":[88],"Gaussian).":[89],"method":[91,121],"requires":[92],"unusually":[93],"large":[94],"representative":[96],"sets,":[98],"which":[99],"we":[100],"provide":[101],"through":[102],"pseudorandom":[103],"generation":[104],"samples":[107],"using":[108],"a":[109,123,137,143,169],"realistic":[110],"model":[111],"printing":[113],"imaging":[115],"distortions.":[116],"illustrate":[119],"on":[122,145],"challenging":[124],"recognition":[125],"problem:":[126],"3755":[127],"classes":[129],"machine-print":[131],"Chinese,":[132],"four":[134],"typefaces,":[135],"over":[136,146],"range":[138],"text":[140],"sizes.":[141],"test":[144],"three":[147],"million":[148],"images,":[149],"perfect-metric":[151],"classifier":[152],"achieved":[153],"better":[154],"than":[155],"99%":[156],"top-choice":[157],"accuracy.":[158],"addition,":[160],"it":[161,165],"shown":[163],"superior":[167],"conventional":[170],"classifier.<":[172],"