{"id":"https://openalex.org/W2774687711","doi":"https://doi.org/10.1109/iccvw.2017.216","title":"Fast Approximate Karhunen-Lo\u00e8ve Transform for Three-Way Array Data","display_name":"Fast Approximate Karhunen-Lo\u00e8ve Transform for Three-Way Array Data","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2774687711","doi":"https://doi.org/10.1109/iccvw.2017.216","mag":"2774687711"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2017.216","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086595860","display_name":"Hayato Itoh","orcid":"https://orcid.org/0000-0002-1410-1078"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"education","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hayato Itoh","raw_affiliation_strings":["Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040797942","display_name":"Atsushi Imiya","orcid":"https://orcid.org/0000-0002-1800-9607"},"institutions":[{"id":"https://openalex.org/I159385669","display_name":"Chiba University","ror":"https://ror.org/01hjzeq58","country_code":"JP","type":"education","lineage":["https://openalex.org/I159385669"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Atsushi Imiya","raw_affiliation_strings":["IMIT, Chiba University, Chiba, Japan"],"affiliations":[{"raw_affiliation_string":"IMIT, Chiba University, Chiba, Japan","institution_ids":["https://openalex.org/I159385669"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068376487","display_name":"Tomoya Sakai","orcid":"https://orcid.org/0000-0003-3510-0979"},"institutions":[{"id":"https://openalex.org/I43777268","display_name":"Nagasaki University","ror":"https://ror.org/058h74p94","country_code":"JP","type":"education","lineage":["https://openalex.org/I43777268"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomoya Sakai","raw_affiliation_strings":["Nagasaki University, Nagasaki, Japan"],"affiliations":[{"raw_affiliation_string":"Nagasaki University, Nagasaki, Japan","institution_ids":["https://openalex.org/I43777268"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":64},"biblio":{"volume":null,"issue":null,"first_page":"1827","last_page":"1834"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Text Compression and Indexing Algorithms","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/independent-component-analysis","display_name":"Independent Component Analysis","score":0.551822},{"id":"https://openalex.org/keywords/convolutional-mixtures","display_name":"Convolutional Mixtures","score":0.504298},{"id":"https://openalex.org/keywords/karhunen\u2013lo\u00e8ve-theorem","display_name":"Karhunen\u2013Lo\u00e8ve theorem","score":0.43008447},{"id":"https://openalex.org/keywords/data-matrix","display_name":"Data Matrix","score":0.41725248}],"concepts":[{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.8210821},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.54952234},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.54540795},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5301113},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.5200224},{"id":"https://openalex.org/C2221639","wikidata":"https://www.wikidata.org/wiki/Q2877","display_name":"Discrete cosine transform","level":3,"score":0.50485784},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45178872},{"id":"https://openalex.org/C178009071","wikidata":"https://www.wikidata.org/wiki/Q93344","display_name":"Trigonometric functions","level":2,"score":0.44618174},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43567502},{"id":"https://openalex.org/C109308471","wikidata":"https://www.wikidata.org/wiki/Q2046647","display_name":"Karhunen\u2013Lo\u00e8ve theorem","level":2,"score":0.43008447},{"id":"https://openalex.org/C2780985081","wikidata":"https://www.wikidata.org/wiki/Q676502","display_name":"Data Matrix","level":5,"score":0.41725248},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.41431558},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38787013},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33515108},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.25948995},{"id":"https://openalex.org/C44465124","wikidata":"https://www.wikidata.org/wiki/Q713623","display_name":"Clade","level":4,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C193252679","wikidata":"https://www.wikidata.org/wiki/Q242125","display_name":"Phylogenetic tree","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2017.216","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1246381107","https://openalex.org/W1501657095","https://openalex.org/W1564660545","https://openalex.org/W1658679052","https://openalex.org/W1970615687","https://openalex.org/W1982725637","https://openalex.org/W2024165284","https://openalex.org/W2029098063","https://openalex.org/W2080678636","https://openalex.org/W2116838368","https://openalex.org/W227277429","https://openalex.org/W2489666810","https://openalex.org/W2509451130","https://openalex.org/W255181480","https://openalex.org/W3104688568","https://openalex.org/W4205778870","https://openalex.org/W4301748957","https://openalex.org/W577239568","https://openalex.org/W607580858","https://openalex.org/W638800637"],"related_works":["https://openalex.org/W417204388","https://openalex.org/W2953035947","https://openalex.org/W2186390138","https://openalex.org/W2060035984","https://openalex.org/W2055682261","https://openalex.org/W1993363272","https://openalex.org/W1963647550","https://openalex.org/W1916685473","https://openalex.org/W187821709","https://openalex.org/W1533710912"],"abstract_inverted_index":{"Organs,":[0],"cells":[1,5],"and":[2,20,69],"microstructures":[3],"in":[4,8],"dealt":[6],"with":[7],"biomedical":[9],"image":[10],"analysis":[11,55],"are":[12,16,46],"volumetric":[13,25,44,73],"data.":[14,51,74],"We":[15],"required":[17],"to":[18],"process":[19],"analyse":[21],"these":[22],"data":[23,26,39,45,58,67,70,115],"as":[24,48],"without":[27],"embedding":[28],"into":[29],"higher-dimensional":[30],"vector":[31,79],"space":[32],"from":[33],"the":[34,82,93],"viewpoints":[35],"of":[36,43,56,72,92,102,113],"object":[37],"oriented":[38],"analysis.":[40,98],"Sampled":[41],"values":[42],"expressed":[47],"three-way":[49,114],"array":[50,77],"Therefore,":[52],"principal":[53,96,103],"component":[54,97,104],"multi-way":[57],"is":[59,87],"an":[60,107],"essential":[61],"technique":[62],"for":[63,95,111],"subspace-based":[64],"pattern":[65],"recognition,":[66],"retrievals":[68],"compression":[71],"For":[75],"one-way":[76],"(the":[78],"form)":[80],"problem":[81],"discrete":[83],"cosine":[84],"transform":[85],"matrix":[86],"a":[88],"good":[89],"relaxed":[90],"solution":[91],"eigenmatrix":[94],"This":[99],"algebraic":[100],"property":[101],"analysis,":[105],"derives":[106],"approximate":[108],"fast":[109],"algorithm":[110],"PCA":[112],"arrays.":[116]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2774687711","counts_by_year":[],"updated_date":"2024-11-05T13:06:56.222981","created_date":"2017-12-22"}