iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICCV51070.2023.01421
{"id":"https://openalex.org/W4390873522","doi":"https://doi.org/10.1109/iccv51070.2023.01421","title":"Champagne: Learning Real-world Conversation from Large-Scale Web Videos","display_name":"Champagne: Learning Real-world Conversation from Large-Scale Web Videos","publication_year":2023,"publication_date":"2023-10-01","ids":{"openalex":"https://openalex.org/W4390873522","doi":"https://doi.org/10.1109/iccv51070.2023.01421"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.01421","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2303.09713","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053165370","display_name":"Seungju Han","orcid":"https://orcid.org/0000-0001-7293-1419"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Seungju Han","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043614405","display_name":"Jack Hessel","orcid":"https://orcid.org/0000-0002-4012-8979"},"institutions":[{"id":"https://openalex.org/I4210156221","display_name":"Allen Institute for Artificial Intelligence","ror":"https://ror.org/05w520734","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210156221"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jack Hessel","raw_affiliation_strings":["Allen Institute for Artificial Intelligence"],"affiliations":[{"raw_affiliation_string":"Allen Institute for Artificial Intelligence","institution_ids":["https://openalex.org/I4210156221"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049618494","display_name":"Nouha Dziri","orcid":null},"institutions":[{"id":"https://openalex.org/I4210156221","display_name":"Allen Institute for Artificial Intelligence","ror":"https://ror.org/05w520734","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210156221"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nouha Dziri","raw_affiliation_strings":["Allen Institute for Artificial Intelligence"],"affiliations":[{"raw_affiliation_string":"Allen Institute for Artificial Intelligence","institution_ids":["https://openalex.org/I4210156221"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102992157","display_name":"Yejin Choi","orcid":"https://orcid.org/0000-0003-3032-5378"},"institutions":[{"id":"https://openalex.org/I4210156221","display_name":"Allen Institute for Artificial Intelligence","ror":"https://ror.org/05w520734","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210156221"]},{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yejin Choi","raw_affiliation_strings":["Allen Institute for Artificial Intelligence","University of Washington"],"affiliations":[{"raw_affiliation_string":"Allen Institute for Artificial Intelligence","institution_ids":["https://openalex.org/I4210156221"]},{"raw_affiliation_string":"University of Washington","institution_ids":["https://openalex.org/I201448701"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101881857","display_name":"Youngjae Yu","orcid":"https://orcid.org/0000-0002-5867-0782"},"institutions":[{"id":"https://openalex.org/I4210156221","display_name":"Allen Institute for Artificial Intelligence","ror":"https://ror.org/05w520734","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210156221"]},{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"education","lineage":["https://openalex.org/I193775966"]}],"countries":["KR","US"],"is_corresponding":false,"raw_author_name":"Youngjae Yu","raw_affiliation_strings":["Allen Institute for Artificial Intelligence","Yonsei University"],"affiliations":[{"raw_affiliation_string":"Allen Institute for Artificial Intelligence","institution_ids":["https://openalex.org/I4210156221"]},{"raw_affiliation_string":"Yonsei University","institution_ids":["https://openalex.org/I193775966"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"15452","last_page":"15463"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Automatic Video Summarization and Analysis","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.61414903},{"id":"https://openalex.org/keywords/language-understanding","display_name":"Language Understanding","score":0.54271},{"id":"https://openalex.org/keywords/image-captioning","display_name":"Image Captioning","score":0.542579},{"id":"https://openalex.org/keywords/video-summarization","display_name":"Video Summarization","score":0.539462},{"id":"https://openalex.org/keywords/visual-question-answering","display_name":"Visual Question Answering","score":0.539137},{"id":"https://openalex.org/keywords/captioning","display_name":"Captioning","score":0.527855},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.46695668}],"concepts":[{"id":"https://openalex.org/C2777200299","wikidata":"https://www.wikidata.org/wiki/Q52943","display_name":"Conversation","level":2,"score":0.87917805},{"id":"https://openalex.org/C2780876879","wikidata":"https://www.wikidata.org/wiki/Q3054749","display_name":"Meaning (existential)","level":2,"score":0.7394981},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67116225},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.61414903},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5696301},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5093337},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.48985574},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47878182},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.46695668},{"id":"https://openalex.org/C207347870","wikidata":"https://www.wikidata.org/wiki/Q371174","display_name":"Gesture","level":2,"score":0.43891248},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.42264053},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.37271142},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3619995},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.34382093},{"id":"https://openalex.org/C46312422","wikidata":"https://www.wikidata.org/wiki/Q11024","display_name":"Communication","level":1,"score":0.17531279},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.12606505},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.1114485},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.07544932},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C542102704","wikidata":"https://www.wikidata.org/wiki/Q183257","display_name":"Psychotherapist","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.01421","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09713","pdf_url":"https://arxiv.org/pdf/2303.09713","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09713","pdf_url":"https://arxiv.org/pdf/2303.09713","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":53,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W1956340063","https://openalex.org/W2058373514","https://openalex.org/W2069870183","https://openalex.org/W2101105183","https://openalex.org/W2883409523","https://openalex.org/W2889326414","https://openalex.org/W2898875342","https://openalex.org/W2913443447","https://openalex.org/W2951583236","https://openalex.org/W2962788902","https://openalex.org/W2963163009","https://openalex.org/W2963206148","https://openalex.org/W2972916088","https://openalex.org/W2979826702","https://openalex.org/W2988937804","https://openalex.org/W3002330681","https://openalex.org/W3034266838","https://openalex.org/W3034600233","https://openalex.org/W3035448310","https://openalex.org/W3097683561","https://openalex.org/W3100307207","https://openalex.org/W3104257895","https://openalex.org/W3144750446","https://openalex.org/W3155584966","https://openalex.org/W3186138538","https://openalex.org/W3202415077","https://openalex.org/W3203409289","https://openalex.org/W3205638321","https://openalex.org/W3212362289","https://openalex.org/W3212886388","https://openalex.org/W4200630700","https://openalex.org/W4205119860","https://openalex.org/W4212774754","https://openalex.org/W4225323055","https://openalex.org/W4225591000","https://openalex.org/W4226399820","https://openalex.org/W4240592325","https://openalex.org/W4249013746","https://openalex.org/W4281699561","https://openalex.org/W4283208789","https://openalex.org/W4287125738","https://openalex.org/W4287203292","https://openalex.org/W4287900772","https://openalex.org/W4288089799","https://openalex.org/W4290771878","https://openalex.org/W4304080179","https://openalex.org/W4312864639","https://openalex.org/W4313459318","https://openalex.org/W4385571466","https://openalex.org/W4385573686","https://openalex.org/W4385573848","https://openalex.org/W4389519535"],"related_works":["https://openalex.org/W4395044357","https://openalex.org/W4387506531","https://openalex.org/W4380551139","https://openalex.org/W4365211920","https://openalex.org/W4317695495","https://openalex.org/W4299831724","https://openalex.org/W4287117424","https://openalex.org/W3014948380","https://openalex.org/W2967848559","https://openalex.org/W2087346071"],"abstract_inverted_index":{"Visual":[0],"information":[1],"is":[2,62,73,95],"central":[3],"to":[4,14,29,68,83,116],"conversation:":[5],"body":[6],"gestures":[7],"and":[8,51,98,121,141],"physical":[9],"behaviour,":[10],"for":[11,43],"example,":[12],"contribute":[13],"meaning":[15],"that":[16,40,78,93,112],"transcends":[17],"words":[18],"alone.":[19],"To":[20,46],"date,":[21],"however,":[22],"most":[23],"neural":[24],"conversational":[25],"models":[26],"are":[27],"limited":[28],"just":[30],"text.":[31],"We":[32,137],"introduce":[33],"Champagne,":[34,48],"a":[35,54,74,84],"generative":[36],"model":[37,77],"of":[38,57],"conversations":[39],"can":[41],"account":[42],"visual":[44],"contexts.":[45],"train":[47],"we":[49],"collect":[50],"release":[52,138],"YTD-18M,":[53],"large-scale":[55],"corpus":[56],"18M":[58],"video-based":[59],"dialogues.":[60],"YTD-18M":[61,94],"constructed":[63],"from":[64,119],"web":[65],"videos:":[66],"crucial":[67],"our":[69],"data":[70],"collection":[71],"pipeline":[72],"pretrained":[75],"language":[76],"converts":[79],"error-prone":[80],"automatic":[81],"transcripts":[82],"cleaner":[85],"dialogue":[86],"format":[87],"while":[88,107],"maintaining":[89,108],"meaning.Human":[90],"evaluation":[91],"reveals":[92],"more":[96],"sensible":[97],"specific":[99],"than":[100],"prior":[101],"resources":[102],"(MMDialog":[103],"[17],":[104],"1M":[105],"dialogues),":[106],"visual-groundedness.":[109],"Experiments":[110],"demonstrate":[111],"1)":[113],"Champagne":[114],"learns":[115],"conduct":[117],"conversation":[118],"YTD-18M;":[120],"2)":[122],"when":[123],"fine-tuned,":[124],"it":[125],"achieves":[126],"state-of-the-art":[127],"results":[128],"on":[129,134],"four":[130],"vision-language":[131],"tasks":[132],"focused":[133],"real-world":[135],"conversations.":[136],"data,":[139],"models,":[140],"code":[142],"at":[143],"https://seungjuhan.me/champagne.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390873522","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-11T01:05:18.556565","created_date":"2024-01-16"}