iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICCV51070.2023.00477
{"id":"https://openalex.org/W4390874483","doi":"https://doi.org/10.1109/iccv51070.2023.00477","title":"Towards Fairness-aware Adversarial Network Pruning","display_name":"Towards Fairness-aware Adversarial Network Pruning","publication_year":2023,"publication_date":"2023-10-01","ids":{"openalex":"https://openalex.org/W4390874483","doi":"https://doi.org/10.1109/iccv51070.2023.00477"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.00477","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100658393","display_name":"Lei Zhang","orcid":"https://orcid.org/0000-0002-0826-169X"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lei Zhang","raw_affiliation_strings":["Zhejiang University"],"affiliations":[{"raw_affiliation_string":"Zhejiang University","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100422345","display_name":"Zhibo Wang","orcid":"https://orcid.org/0000-0002-5804-3279"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhibo Wang","raw_affiliation_strings":["Zhejiang University"],"affiliations":[{"raw_affiliation_string":"Zhejiang University","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101717139","display_name":"Xiaowei Dong","orcid":null},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaowei Dong","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103242391","display_name":"Yunhe Feng","orcid":"https://orcid.org/0000-0002-7599-2484"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"education","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yunhe Feng","raw_affiliation_strings":["University of North Texas"],"affiliations":[{"raw_affiliation_string":"University of North Texas","institution_ids":["https://openalex.org/I123534392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083836256","display_name":"Xiaoyi Pang","orcid":"https://orcid.org/0000-0002-2763-2695"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyi Pang","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114860359","display_name":"Zhifei Zhang","orcid":"https://orcid.org/0000-0003-0466-9548"},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"company","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhifei Zhang","raw_affiliation_strings":["Adobe Research"],"affiliations":[{"raw_affiliation_string":"Adobe Research","institution_ids":["https://openalex.org/I1306409833"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000596496","display_name":"Kui Ren","orcid":"https://orcid.org/0000-0003-3441-6277"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kui Ren","raw_affiliation_strings":["Zhejiang University"],"affiliations":[{"raw_affiliation_string":"Zhejiang University","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.403,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.626095,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"5145","last_page":"5154"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.89471996},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.551368},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.524084},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.515716},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.50082}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.89471996},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7538643},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.5734783},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56921107},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5304947},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.48524284},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41947424},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17694241},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.00477","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1821462560","https://openalex.org/W1834627138","https://openalex.org/W2158844819","https://openalex.org/W2194775991","https://openalex.org/W2725155646","https://openalex.org/W2905029197","https://openalex.org/W2937229771","https://openalex.org/W2949200088","https://openalex.org/W2962851801","https://openalex.org/W2962925443","https://openalex.org/W2963116854","https://openalex.org/W2965862774","https://openalex.org/W2970500560","https://openalex.org/W3004542466","https://openalex.org/W3034234149","https://openalex.org/W3034251466","https://openalex.org/W3093377743","https://openalex.org/W3097489012","https://openalex.org/W3168398407","https://openalex.org/W3180849877","https://openalex.org/W3181161645","https://openalex.org/W3181414820","https://openalex.org/W3193895134","https://openalex.org/W4289258088","https://openalex.org/W4295795871","https://openalex.org/W4312559913","https://openalex.org/W4312950795","https://openalex.org/W4313117512"],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4288019534","https://openalex.org/W4285226279","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3126451824","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"Network":[0],"pruning":[1,30,42,56,74,82,101,134,169,182,195],"aims":[2],"to":[3,59,138,150,193],"compress":[4],"models":[5],"while":[6,184],"minimizing":[7],"loss":[8],"in":[9,17,62],"accuracy.":[10],"With":[11],"the":[12,20,78,157,175,180],"increasing":[13],"focus":[14],"on":[15,168],"bias":[16,21],"AI":[18],"systems,":[19],"inheriting":[22],"or":[23],"even":[24],"magnification":[25],"nature":[26],"of":[27,52,68,160],"traditional":[28,194],"network":[29,39,96,152],"methods":[31,45],"has":[32],"raised":[33],"a":[34],"new":[35],"perspective":[36],"towards":[37],"fairness-aware":[38,95,132],"pruning.":[40,63],"Straightforward":[41],"plus":[43],"debias":[44,103,171],"and":[46,85,102,118,122,170],"recent":[47],"designs":[48],"for":[49,94,116,126],"monitoring":[50],"disparities":[51],"demographic":[53],"attributes":[54],"during":[55],"have":[57],"endeavored":[58],"enhance":[60],"fairness":[61,187],"However,":[64],"neither":[65],"simple":[66],"assembling":[67],"two":[69],"tasks":[70,104],"nor":[71],"specifically":[72],"designed":[73],"strategies":[75],"could":[76,147,178],"achieve":[77],"optimal":[79],"trade-off":[80],"among":[81],"ratio,":[83],"accuracy,":[84],"fairness.":[86,127],"This":[87],"paper":[88],"proposes":[89],"an":[90],"end-to-end":[91],"learnable":[92],"framework":[93],"pruning,":[97,117],"which":[98],"optimizes":[99],"both":[100],"jointly":[105],"by":[106,188],"adversarial":[107,133],"training":[108],"against":[109],"those":[110],"final":[111],"evaluation":[112],"metrics":[113],"like":[114],"accuracy":[115],"disparate":[119],"impact":[120],"(DI)":[121],"equalized":[123],"odds":[124],"(DEO)":[125],"In":[128],"other":[129],"words,":[130],"our":[131,145,161],"method":[135,177],"would":[136],"learn":[137],"prune":[139],"without":[140],"any":[141],"handcraft":[142],"rules.":[143],"Therefore,":[144],"approach":[146],"flexibly":[148],"adapt":[149],"variate":[151],"structures.":[153],"Exhaustive":[154],"experimentation":[155],"demonstrates":[156],"generalization":[158],"capacity":[159],"approach,":[162],"as":[163,165,191],"well":[164],"superior":[166],"performance":[167,183],"simultaneously.":[172],"To":[173],"highlight,":[174],"proposed":[176],"preserve":[179],"SOTA":[181],"significantly":[185],"improving":[186],"around":[189],"50%":[190],"compared":[192],"methods.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390874483","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-30T10:50:32.667171","created_date":"2024-01-16"}