{"id":"https://openalex.org/W4375869092","doi":"https://doi.org/10.1109/icassp49357.2023.10096163","title":"Towards Adversarially Robust Continual Learning","display_name":"Towards Adversarially Robust Continual Learning","publication_year":2023,"publication_date":"2023-05-05","ids":{"openalex":"https://openalex.org/W4375869092","doi":"https://doi.org/10.1109/icassp49357.2023.10096163"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096163","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.1109/icassp49357.2023.10096163","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072156971","display_name":"Tao Bai","orcid":"https://orcid.org/0000-0002-2034-8026"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Tao Bai","raw_affiliation_strings":["School of Computer Science and Engineering, Nanyang Technological University"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Nanyang Technological University","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100418433","display_name":"Chen Chen","orcid":"https://orcid.org/0000-0002-3525-9755"},"institutions":[{"id":"https://openalex.org/I168879160","display_name":"Zhejiang University of Science and Technology","ror":"https://ror.org/05mx0wr29","country_code":"CN","type":"education","lineage":["https://openalex.org/I168879160"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Chen","raw_affiliation_strings":["College of Computer Science and Technology, Zhejiang University"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Technology, Zhejiang University","institution_ids":["https://openalex.org/I168879160"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052577882","display_name":"Lingjuan Lyu","orcid":"https://orcid.org/0000-0003-3170-4994"},"institutions":[{"id":"https://openalex.org/I2800278093","display_name":"Sony Corporation (United States)","ror":"https://ror.org/05k91zb11","country_code":"US","type":"company","lineage":["https://openalex.org/I2800278093"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lingjuan Lyu","raw_affiliation_strings":["Sony AI"],"affiliations":[{"raw_affiliation_string":"Sony AI","institution_ids":["https://openalex.org/I2800278093"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071321132","display_name":"Jun Zhao","orcid":"https://orcid.org/0000-0002-3004-7091"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Jun Zhao","raw_affiliation_strings":["School of Computer Science and Engineering, Nanyang Technological University"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Nanyang Technological University","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024709593","display_name":"Bihan Wen","orcid":"https://orcid.org/0000-0002-6874-6453"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Bihan Wen","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.208,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.999978,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9827,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9288,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adversarial-examples","display_name":"Adversarial Examples","score":0.556987},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.552253},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.544405},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.537335},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.53655}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.84378076},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.75750613},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7443198},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7375111},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.7069722},{"id":"https://openalex.org/C2780598303","wikidata":"https://www.wikidata.org/wiki/Q65921492","display_name":"Flexibility (engineering)","level":2,"score":0.45899752},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45358378},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.42789602},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10910696},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096163","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.17764","pdf_url":"https://arxiv.org/pdf/2303.17764","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096163","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W1821462560","https://openalex.org/W1945616565","https://openalex.org/W2194775991","https://openalex.org/W2473930607","https://openalex.org/W2560647685","https://openalex.org/W2765407302","https://openalex.org/W2913266441","https://openalex.org/W2949995560","https://openalex.org/W2964189064","https://openalex.org/W2998028649","https://openalex.org/W3030364939","https://openalex.org/W3031989616","https://openalex.org/W3035521292","https://openalex.org/W3118565077","https://openalex.org/W3118608800","https://openalex.org/W3191453585","https://openalex.org/W3212150209","https://openalex.org/W4226164018","https://openalex.org/W4285579917","https://openalex.org/W4293846201","https://openalex.org/W4295883599","https://openalex.org/W4312269593","https://openalex.org/W4312663823","https://openalex.org/W4312769405"],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4288019534","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3176240006","https://openalex.org/W3126451824","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"Recent":[0],"studies":[1,51],"show":[2,117],"that":[3],"models":[4,26],"trained":[5],"by":[6],"continual":[7,24,64,89,106],"learning":[8,18,21,25,36,65,90,107],"can":[9],"achieve":[10],"the":[11,15,20,32,53,57,82,103,118],"comparable":[12],"performances":[13],"as":[14],"standard":[16,60],"supervised":[17,61],"and":[19,91,114,123],"flexibility":[22],"of":[23,59,105,120],"enables":[27],"their":[28],"wide":[29],"applications":[30],"in":[31,56,76,88,125],"real":[33],"world.":[34],"Deep":[35],"models,":[37],"however,":[38],"are":[39,49,81],"shown":[40],"to":[41,44,84,101],"be":[42],"vulnerable":[43],"adversarial":[45,67,86,121,127],"attacks.":[46,128],"Though":[47],"there":[48],"many":[50],"on":[52,112],"model":[54],"robustness":[55,87,104],"context":[58],"learning,":[62],"protecting":[63],"from":[66],"attacks":[68],"has":[69],"not":[70],"yet":[71],"been":[72],"investigated.":[73],"To":[74],"fill":[75],"this":[77],"research":[78],"gap,":[79],"we":[80,116],"first":[83],"study":[85],"propose":[92],"a":[93],"novel":[94],"method":[95],"called":[96],"Task-Aware":[97],"Boundary":[98],"Augmentation":[99],"(TABA)":[100],"boost":[102],"models.":[108],"With":[109],"extensive":[110],"experiments":[111],"CIFAR-10":[113],"CIFAR-100,":[115],"efficacy":[119],"training":[122],"TABA":[124],"defending":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4375869092","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-02T20:25:57.948531","created_date":"2023-05-10"}