iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/ICASSP48485.2024.10446953
{"id":"https://openalex.org/W4392903024","doi":"https://doi.org/10.1109/icassp48485.2024.10446953","title":"Benchmarking Adversarial Robustness of Image Shadow Removal with Shadow-Adaptive Attacks","display_name":"Benchmarking Adversarial Robustness of Image Shadow Removal with Shadow-Adaptive Attacks","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4392903024","doi":"https://doi.org/10.1109/icassp48485.2024.10446953"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446953","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.1109/icassp48485.2024.10446953","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100329436","display_name":"Chong Wang","orcid":"https://orcid.org/0000-0002-0541-2210"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Chong Wang","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102964297","display_name":"Yi Yu","orcid":"https://orcid.org/0009-0004-1485-1567"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Yi Yu","raw_affiliation_strings":["ROSE Lab, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore","School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]},{"raw_affiliation_string":"ROSE Lab, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101553481","display_name":"Lanqing Guo","orcid":"https://orcid.org/0000-0002-9452-4723"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Lanqing Guo","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024709593","display_name":"Bihan Wen","orcid":"https://orcid.org/0000-0002-6874-6453"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Bihan Wen","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.285,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.999951,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"13126","last_page":"13130"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.71714944},{"id":"https://openalex.org/keywords/image-inpainting","display_name":"Image Inpainting","score":0.507331},{"id":"https://openalex.org/keywords/adversarial-examples","display_name":"Adversarial Examples","score":0.50424},{"id":"https://openalex.org/keywords/shadow-mapping","display_name":"Shadow mapping","score":0.44681668}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7497333},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7433371},{"id":"https://openalex.org/C117797892","wikidata":"https://www.wikidata.org/wiki/Q286363","display_name":"Shadow (psychology)","level":2,"score":0.72277737},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.71714944},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.68094635},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.63170505},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5529457},{"id":"https://openalex.org/C116544410","wikidata":"https://www.wikidata.org/wiki/Q1478122","display_name":"Shadow mapping","level":2,"score":0.44681668},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C542102704","wikidata":"https://www.wikidata.org/wiki/Q183257","display_name":"Psychotherapist","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446953","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.10076","pdf_url":"https://arxiv.org/pdf/2403.10076","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446953","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/13","display_name":"Climate action"}],"grants":[{"funder":"https://openalex.org/F4320311649","funder_display_name":"Ministry of Education","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1432573875","https://openalex.org/W1864774065","https://openalex.org/W1967913888","https://openalex.org/W2060850257","https://openalex.org/W2123009513","https://openalex.org/W2130210787","https://openalex.org/W2765946592","https://openalex.org/W2963014378","https://openalex.org/W2997378071","https://openalex.org/W3198324776","https://openalex.org/W3202215329","https://openalex.org/W4283815594","https://openalex.org/W4293846201","https://openalex.org/W4312549046","https://openalex.org/W4312862560","https://openalex.org/W4313022653","https://openalex.org/W4382240787","https://openalex.org/W4386065769","https://openalex.org/W4386066096","https://openalex.org/W4386083143","https://openalex.org/W46219734"],"related_works":["https://openalex.org/W4387143966","https://openalex.org/W4287115361","https://openalex.org/W4200295500","https://openalex.org/W3176659669","https://openalex.org/W2743826367","https://openalex.org/W2557434884","https://openalex.org/W2353014491","https://openalex.org/W2316352747","https://openalex.org/W2031094984","https://openalex.org/W1504907250"],"abstract_inverted_index":{"Shadow":[0],"removal":[1,173],"is":[2,70,104],"a":[3,50,89,132,166],"task":[4],"aimed":[5],"at":[6],"erasing":[7],"regional":[8],"shadows":[9],"present":[10],"in":[11,31,111,122,137,151,155],"images":[12],"and":[13],"reinstating":[14],"visually":[15,127],"pleasing":[16],"natural":[17],"scenes":[18],"with":[19,146],"consistent":[20],"illumination.":[21],"While":[22],"recent":[23],"deep":[24],"learning":[25],"techniques":[26],"have":[27],"demonstrated":[28],"impressive":[29],"performance":[30],"image":[32],"shadow":[33,67,82,115,152,172],"removal,":[34],"their":[35],"robustness":[36],"against":[37],"adversarial":[38,94,99,120],"attacks":[39,143],"remains":[40],"largely":[41],"unexplored.":[42],"Furthermore,":[43],"many":[44],"existing":[45,171],"attack":[46,102,181],"frameworks":[47],"typically":[48],"allocate":[49],"uniform":[51],"budget":[52,103],"for":[53,65,135],"perturbations":[54,136,156],"across":[55],"the":[56,74,108,118,123,147],"entire":[57],"input":[58],"image,":[59],"which":[60],"may":[61],"not":[62],"be":[63],"suitable":[64],"attacking":[66],"images.":[68,83,116],"This":[69],"primarily":[71],"due":[72],"to":[73,177],"unique":[75],"characteristic":[76],"of":[77,114,170,180],"spatially":[78],"varying":[79,148],"illumination":[80,149],"within":[81],"In":[84],"this":[85],"paper,":[86],"we":[87,164],"propose":[88],"novel":[90],"approach,":[91],"called":[92],"shadow-adaptive":[93,142],"attack.":[95],"Different":[96],"from":[97],"standard":[98],"attacks,":[100],"our":[101],"adjusted":[105],"based":[106],"on":[107,162,182],"pixel":[109],"intensity":[110],"different":[112],"regions":[113,125],"Consequently,":[117],"optimized":[119],"noise":[121],"shadowed":[124],"becomes":[126],"less":[128,159],"perceptible":[129],"while":[130],"permitting":[131],"greater":[133],"tolerance":[134],"non-shadow":[138],"regions.":[139],"The":[140],"proposed":[141],"naturally":[144],"align":[145],"distribution":[150],"images,":[153],"resulting":[154],"that":[157],"are":[158],"conspicuous.":[160],"Building":[161],"this,":[163],"conduct":[165],"comprehensive":[167],"empirical":[168],"evaluation":[169],"methods,":[174],"subjecting":[175],"them":[176],"various":[178],"levels":[179],"publicly":[183],"available":[184],"datasets.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392903024","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-11-24T01:00:58.550917","created_date":"2024-03-19"}