iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/GLOBALSIP.2014.7032140
{"id":"https://openalex.org/W1980566217","doi":"https://doi.org/10.1109/globalsip.2014.7032140","title":"Online sparsifying transform learning for signal processing","display_name":"Online sparsifying transform learning for signal processing","publication_year":2014,"publication_date":"2014-12-01","ids":{"openalex":"https://openalex.org/W1980566217","doi":"https://doi.org/10.1109/globalsip.2014.7032140","mag":"1980566217"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/globalsip.2014.7032140","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111562177","display_name":"Saiprasad Ravishankar","orcid":null},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Saiprasad Ravishankar","raw_affiliation_strings":["[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]"],"affiliations":[{"raw_affiliation_string":"[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024709593","display_name":"Bihan Wen","orcid":"https://orcid.org/0000-0002-6874-6453"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bihan Wen","raw_affiliation_strings":["[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]"],"affiliations":[{"raw_affiliation_string":"[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5026523226","display_name":"Yoram Bresler","orcid":"https://orcid.org/0000-0002-9738-1094"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yoram Bresler","raw_affiliation_strings":["[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]"],"affiliations":[{"raw_affiliation_string":"[Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA]","institution_ids":["https://openalex.org/I157725225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.426,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.584632,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":"54","issue":null,"first_page":"364","last_page":"368"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sparsity-in-signal-processing","display_name":"Sparsity in Signal Processing","score":0.61941},{"id":"https://openalex.org/keywords/dictionary-learning","display_name":"Dictionary Learning","score":0.572291},{"id":"https://openalex.org/keywords/sparse-approximation","display_name":"Sparse Approximation","score":0.570949},{"id":"https://openalex.org/keywords/signal-decomposition","display_name":"Signal Decomposition","score":0.555689},{"id":"https://openalex.org/keywords/compressed-sensing","display_name":"Compressed Sensing","score":0.549817},{"id":"https://openalex.org/keywords/representation","display_name":"Representation (politics)","score":0.50160646},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature learning","score":0.4387967},{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.43058667}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7194785},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.6061335},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.57103485},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5600851},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.5157585},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.50160646},{"id":"https://openalex.org/C2988886741","wikidata":"https://www.wikidata.org/wiki/Q25304494","display_name":"Dictionary learning","level":3,"score":0.48698792},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4387967},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.43058667},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42362267},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38073534},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.124325484},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/globalsip.2014.7032140","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.79,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1976709621","https://openalex.org/W1989833002","https://openalex.org/W2002932002","https://openalex.org/W2017692724","https://openalex.org/W2017909277","https://openalex.org/W2021302824","https://openalex.org/W2028781966","https://openalex.org/W2038016146","https://openalex.org/W2066771519","https://openalex.org/W2090457307","https://openalex.org/W2107844156","https://openalex.org/W2112447569","https://openalex.org/W2115755118","https://openalex.org/W2120047933","https://openalex.org/W2120298035","https://openalex.org/W2134809980","https://openalex.org/W2141039087","https://openalex.org/W2143731537","https://openalex.org/W2145889472","https://openalex.org/W2148056225","https://openalex.org/W2149974988","https://openalex.org/W2153663612","https://openalex.org/W2158874661","https://openalex.org/W2160547390","https://openalex.org/W2167188281"],"related_works":["https://openalex.org/W2561456314","https://openalex.org/W2509955295","https://openalex.org/W2369564042","https://openalex.org/W2363993830","https://openalex.org/W2249096836","https://openalex.org/W2152958724","https://openalex.org/W2126683262","https://openalex.org/W1992008660","https://openalex.org/W1987225540","https://openalex.org/W1778286912"],"abstract_inverted_index":{"Many":[0],"techniques":[1],"in":[2,13,28],"signal":[3,32,87],"and":[4,34,56,85,95,145],"image":[5],"processing":[6,88],"exploit":[7],"the":[8,39,136,139],"sparsity":[9],"of":[10,42,69,120,138],"natural":[11],"signals":[12],"a":[14,64,107,121],"transform":[15,51,100,123,131],"domain":[16],"or":[17],"dictionary.":[18],"Adaptive":[19],"synthesis":[20,114],"dictionaries":[21],"have":[22,106],"been":[23],"shown":[24,104],"to":[25,105],"be":[26,77],"useful":[27,79],"applications":[29,89],"such":[30,90],"as":[31,91],"denoising,":[33],"compressed":[35],"sensing.":[36],"More":[37],"recently,":[38],"data-driven":[40],"adaptation":[41],"sparsifying":[43,50,71,122],"transforms":[44],"has":[45],"received":[46],"some":[47],"interest.":[48],"The":[49,97,117],"model":[52],"allows":[53],"for":[54,66,86,142],"exact":[55],"cheap":[57],"computations.":[58],"In":[59],"this":[60],"work,":[61],"we":[62],"propose":[63],"framework":[65],"online":[67,74,99,113],"learning":[68,75,101,119],"square":[70],"transforms.":[72],"Such":[73],"can":[76],"particularly":[78],"when":[80],"dealing":[81],"with":[82],"big":[83],"data,":[84],"realtime":[92],"sparse":[93,143],"representation":[94],"denoising.":[96,146],"proposed":[98,140],"algorithm":[102],"is":[103],"much":[108],"lower":[109],"computational":[110],"cost":[111],"than":[112,128],"dictionary":[115],"learning.":[116,132],"sequential":[118],"also":[124],"typically":[125],"converges":[126],"faster":[127],"batch":[129],"mode":[130],"Preliminary":[133],"experiments":[134],"show":[135],"usefulness":[137],"schemes":[141],"representation,":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1980566217","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2024-11-23T17:43:33.043153","created_date":"2016-06-24"}