{"id":"https://openalex.org/W2936017454","doi":"https://doi.org/10.1109/fskd.2018.8686919","title":"Hyperspectral Remote Sensing Images Terrain Classification Based on PCA-KMFA","display_name":"Hyperspectral Remote Sensing Images Terrain Classification Based on PCA-KMFA","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2936017454","doi":"https://doi.org/10.1109/fskd.2018.8686919","mag":"2936017454"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fskd.2018.8686919","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080307879","display_name":"Jing Liu","orcid":"https://orcid.org/0000-0002-3960-6902"},"institutions":[{"id":"https://openalex.org/I4210136859","display_name":"Xi\u2019an University of Posts and Telecommunications","ror":"https://ror.org/04jn0td46","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210136859"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Liu","raw_affiliation_strings":["School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi' an, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi' an, China","institution_ids":["https://openalex.org/I4210136859"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006328223","display_name":"Meng-Yan Li","orcid":null},"institutions":[{"id":"https://openalex.org/I4210136859","display_name":"Xi\u2019an University of Posts and Telecommunications","ror":"https://ror.org/04jn0td46","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210136859"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Meng-Yan Li","raw_affiliation_strings":["School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi' an, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi' an, China","institution_ids":["https://openalex.org/I4210136859"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100695128","display_name":"Yi Liu","orcid":"https://orcid.org/0000-0001-9993-0731"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Liu","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, Xi' an, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, Xi' an, China","institution_ids":["https://openalex.org/I149594827"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":62},"biblio":{"volume":"26","issue":null,"first_page":"739","last_page":"744"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Applications of Remote Sensing in Geoscience and Agriculture","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Chemometrics in Analytical Chemistry and Food Technology","score":0.9623,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.563089},{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.519319},{"id":"https://openalex.org/keywords/spatial-pattern-analysis","display_name":"Spatial Pattern Analysis","score":0.511272},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.50495},{"id":"https://openalex.org/keywords/principal-component-analysis","display_name":"Principal Component Analysis","score":0.502775}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.82335925},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.8106488},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.7526629},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.74385},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7125809},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.62925303},{"id":"https://openalex.org/C182335926","wikidata":"https://www.wikidata.org/wiki/Q17093020","display_name":"Kernel principal component analysis","level":4,"score":0.6121665},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5336683},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.5177471},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.51140946},{"id":"https://openalex.org/C181367576","wikidata":"https://www.wikidata.org/wiki/Q6394184","display_name":"Kernel Fisher discriminant analysis","level":4,"score":0.47835037},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3821921},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.31732443},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.30075783},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.08826974}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fskd.2018.8686919","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.63,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W2019338222","https://openalex.org/W2025139695","https://openalex.org/W2073786624","https://openalex.org/W2083522613","https://openalex.org/W2087281673","https://openalex.org/W2132549764","https://openalex.org/W2187325184","https://openalex.org/W2295124130","https://openalex.org/W2341545927","https://openalex.org/W2351194439","https://openalex.org/W2359753859","https://openalex.org/W2559615147","https://openalex.org/W3145732456","https://openalex.org/W3148981562","https://openalex.org/W4300920262","https://openalex.org/W4385527727"],"related_works":["https://openalex.org/W3093470103","https://openalex.org/W3033319502","https://openalex.org/W2905418897","https://openalex.org/W2395040056","https://openalex.org/W2375053148","https://openalex.org/W2114217318","https://openalex.org/W2046363782","https://openalex.org/W1982817239","https://openalex.org/W1967057085","https://openalex.org/W1607829095"],"abstract_inverted_index":{"Hyperspectral":[0],"remote":[1],"sensing":[2],"images":[3],"(HRSIs)":[4],"have":[5],"the":[6,54,59,68,73,86,92,107,115],"problems":[7],"of":[8,95],"high":[9],"dimensionality,":[10],"strong":[11],"linear":[12,55,116],"correlation":[13,56],"among":[14,58],"dimensions,":[15,60],"and":[16,38,61,122],"poor":[17],"data":[18],"separability,":[19],"which":[20],"result":[21],"in":[22,72,85],"low":[23],"terrain":[24],"recognition":[25],"rate.":[26],"A":[27],"new":[28],"feature":[29,76],"extraction":[30],"algorithm":[31],"based":[32],"on":[33,91],"principal":[34],"component":[35],"analysis":[36,42,118,125],"(PCA)":[37],"kernel":[39],"marginal":[40,123],"Fisher":[41,124],"(KMFA),":[43],"namely":[44],"PCA-KMFA,":[45],"is":[46,50,64,80,112],"presented.":[47],"Firstly,":[48],"PCA":[49,75],"used":[51,65,81],"for":[52,66,82],"removing":[53],"redundancy":[57],"then":[62],"KMFA":[63],"extracting":[67],"nonlinear":[69],"separable":[70],"features":[71],"resulting":[74,87],"space,":[77],"Bayesian":[78],"classifier":[79],"performing":[83],"classification":[84],"PCA-KMFA":[88,109],"subspace.":[89],"Based":[90],"experimental":[93],"results":[94],"two":[96],"airborne":[97],"visible-infrared":[98],"imaging":[99],"spectrometer":[100],"(AVIRIS)":[101],"HRSIs,":[102],"we":[103],"can":[104],"see":[105],"that":[106],"presented":[108],"subspace":[110,120,127],"method":[111,121],"superior":[113],"to":[114],"discriminant":[117],"(LDA)":[119],"(MFA)":[126],"method.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2936017454","counts_by_year":[],"updated_date":"2024-10-13T18:32:20.351704","created_date":"2019-04-25"}